These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19630424)

  • 1. Enzyme promotes the hydrogelation from a hydrophobic small molecule.
    Gao J; Wang H; Wang L; Wang J; Kong D; Yang Z
    J Am Chem Soc; 2009 Aug; 131(32):11286-7. PubMed ID: 19630424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation.
    Thornton K; Smith AM; Merry CL; Ulijn RV
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):660-4. PubMed ID: 19614571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration.
    Wang H; Ren C; Song Z; Wang L; Chen X; Yang Z
    Nanotechnology; 2010 Jun; 21(22):225606. PubMed ID: 20453274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo.
    Yang Z; Liang G; Wang L; Xu B
    J Am Chem Soc; 2006 Mar; 128(9):3038-43. PubMed ID: 16506785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-assisted formation of nanosphere: a potential carrier for hydrophobic compounds.
    Wang H; Wang Z; Song D; Wang J; Gao J; Wang L; Kong D; Yang Z
    Nanotechnology; 2010 Apr; 21(15):155602. PubMed ID: 20299724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-responsive and thermoreversible hydrogels of N-(2-hydroxyalkyl)-L-valine amphiphiles.
    Ghosh A; Dey J
    Langmuir; 2009 Aug; 25(15):8466-72. PubMed ID: 19290657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrous crystalline hydrogels formed from polymers possessing a linear poly(ethyleneimine) backbone.
    Yuan JJ; Jin RH
    Langmuir; 2005 Mar; 21(7):3136-45. PubMed ID: 15779996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
    Chen C; Gu Y; Deng L; Han S; Sun X; Chen Y; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14360-8. PubMed ID: 25087842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites.
    Dutta S; Kar T; Mandal D; Das PK
    Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-molecular-weight gelators based on N(alpha)-acetyl-N(epsilon)-dodecyl-L-lysine and their amphiphilic gelation properties.
    Suzuki M; Abe T; Hanabusa K
    J Colloid Interface Sci; 2010 Jan; 341(1):69-74. PubMed ID: 19846106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic biomaterials: engineering organophosphate hydrolase to form self-assembling enzymatic hydrogels.
    Lu HD; Wheeldon IR; Banta S
    Protein Eng Des Sel; 2010 Jul; 23(7):559-66. PubMed ID: 20457694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-induced control of supramolecular order in biocatalytic hydrogelation.
    Roy S; Javid N; Sefcik J; Halling PJ; Ulijn RV
    Langmuir; 2012 Dec; 28(48):16664-70. PubMed ID: 23116236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched peptides for enzymatic supramolecular hydrogelation.
    He H; Wang H; Zhou N; Yang D; Xu B
    Chem Commun (Camb); 2017 Dec; 54(1):86-89. PubMed ID: 29211067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic Control of the Conformational Landscape of Self-Assembling Peptides.
    Shi J; Fichman G; Schneider JP
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11188-11192. PubMed ID: 29969177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-induced hydrogelation.
    Bieser AM; Tiller JC
    Chem Commun (Camb); 2005 Aug; (31):3942-4. PubMed ID: 16075079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme Instructed Self-assembly of Naphthalimide-dipeptide: Spontaneous Transformation from Nanosphere to Nanotubular Structures that Induces Hydrogelation.
    Chakravarthy RD; Mohammed M; Lin HC
    Chem Asian J; 2020 Sep; 15(17):2696-2705. PubMed ID: 32652888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs.
    Daoud-Mahammed S; Grossiord JL; Bergua T; Amiel C; Couvreur P; Gref R
    J Biomed Mater Res A; 2008 Sep; 86(3):736-48. PubMed ID: 18041727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclohexane bis-urea compounds for the gelation of water and aqueous solutions.
    de Loos M; Friggeri A; van Esch J; Kellogg RM; Feringa BL
    Org Biomol Chem; 2005 May; 3(9):1631-9. PubMed ID: 15858643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release.
    Nummelin S; Liljeström V; Saarikoski E; Ropponen J; Nykänen A; Linko V; Seppälä J; Hirvonen J; Ikkala O; Bimbo LM; Kostiainen MA
    Chemistry; 2015 Oct; 21(41):14433-9. PubMed ID: 26134175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene-based fluorescent ambidextrous gelators: scaffolds for mechanically robust SWNT-gel nanocomposites.
    Mandal D; Kar T; Das PK
    Chemistry; 2014 Jan; 20(5):1349-58. PubMed ID: 24339266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.