These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19630505)

  • 41. Temporal and organ-specific detection of cNMPs including cUMP in the zebrafish.
    Dittmar F; Abdelilah-Seyfried S; Tschirner SK; Kaever V; Seifert R
    Biochem Biophys Res Commun; 2015 Dec; 468(4):708-12. PubMed ID: 26551461
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos.
    Purushothaman K; Das PP; Presslauer C; Lim TK; Johansen SD; Lin Q; Babiak I
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31861170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A gene expression screen in zebrafish embryogenesis.
    Kudoh T; Tsang M; Hukriede NA; Chen X; Dedekian M; Clarke CJ; Kiang A; Schultz S; Epstein JA; Toyama R; Dawid IB
    Genome Res; 2001 Dec; 11(12):1979-87. PubMed ID: 11731487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.
    Rahlouni F; Szarka S; Shulaev V; Prokai L
    Zebrafish; 2015 Dec; 12(6):398-407. PubMed ID: 26439676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 13C-isotope-based protocol for prenyl lipid metabolic analysis in zebrafish embryos.
    Mugoni V; Medana C; Santoro MM
    Nat Protoc; 2013 Dec; 8(12):2337-47. PubMed ID: 24177291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deciphering the enigma of the function of alpha-tocopherol as a vitamin.
    Traber MG
    Free Radic Biol Med; 2024 Aug; 221():64-74. PubMed ID: 38754744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptome analysis of zebrafish embryogenesis using microarrays.
    Mathavan S; Lee SG; Mak A; Miller LD; Murthy KR; Govindarajan KR; Tong Y; Wu YL; Lam SH; Yang H; Ruan Y; Korzh V; Gong Z; Liu ET; Lufkin T
    PLoS Genet; 2005 Aug; 1(2):260-76. PubMed ID: 16132083
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish.
    Weger M; Diotel N; Weger BD; Beil T; Zaucker A; Eachus HL; Oakes JA; do Rego JL; Storbeck KH; Gut P; Strähle U; Rastegar S; Müller F; Krone N
    J Neuroendocrinol; 2018 Apr; 30(4):e12586. PubMed ID: 29486070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative gene expression analysis of the fmnl family of formins during zebrafish development and implications for tissue specific functions.
    Santos-Ledo A; Jenny A; Marlow FL
    Gene Expr Patterns; 2013; 13(1-2):30-7. PubMed ID: 23072729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single-embryo metabolomics and systematic prediction of developmental stage in zebrafish.
    Hayashi S; Yoshida M; Fujiwara T; Maegawa S; Fukusaki E
    Z Naturforsch C J Biosci; 2011; 66(3-4):191-8. PubMed ID: 21630594
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolome analysis of Drosophila melanogaster during embryogenesis.
    An PN; Yamaguchi M; Bamba T; Fukusaki E
    PLoS One; 2014; 9(8):e99519. PubMed ID: 25121768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calorimetric Heat Dissipation Measurements of Developing Zebrafish Embryos.
    Rodenfels J; Neugebauer KM
    Methods Mol Biol; 2021; 2329():311-321. PubMed ID: 34085232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measuring the Energetic Costs of Embryonic Development.
    Foster PJ; Razo-Mejia M; Phillips R
    Dev Cell; 2019 Mar; 48(5):591-592. PubMed ID: 30861370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolomics profiling of haloperidol and validation of thromboxane-related signaling in the early development of zebrafish.
    Lin YC; Huang C; Huang HC; Liao MT; Lai YH
    Biochem Biophys Res Commun; 2019 Jun; 513(3):608-615. PubMed ID: 30981506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New-generation mass spectrometry expands the toolbox of cell and developmental biology.
    Lombard-Banek C; Portero EP; Onjiko RM; Nemes P
    Genesis; 2017 Jan; 55(1-2):. PubMed ID: 28095647
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the dichotomy (im)posed by developmental autonomy during early human embryogenesis.
    Albertini DF
    J Assist Reprod Genet; 2016 Jul; 33(7):821-2. PubMed ID: 27314416
    [No Abstract]   [Full Text] [Related]  

  • 57. Metabolomics of developing zebrafish embryos using gas chromatography- and liquid chromatography-mass spectrometry.
    Huang SM; Xu F; Lam SH; Gong Z; Ong CN
    Mol Biosyst; 2013 Jun; 9(6):1372-80. PubMed ID: 23475132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular characterization of zebrafish embryogenesis via DNA microarrays and multiplatform time course metabolomics studies.
    Soanes KH; Achenbach JC; Burton IW; Hui JP; Penny SL; Karakach TK
    J Proteome Res; 2011 Nov; 10(11):5102-17. PubMed ID: 21910437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of Mass Spectrometry Imaging for Drug Metabolism and Distribution Studies in the Zebrafish Larvae Model: A Case Study with the Opioid Antagonist Naloxone.
    Park YM; Meyer MR; Müller R; Herrmann J
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Drug Administration Routes Impact the Metabolism of a Synthetic Cannabinoid in the Zebrafish Larvae Model.
    Park YM; Meyer MR; Müller R; Herrmann J
    Molecules; 2020 Sep; 25(19):. PubMed ID: 33003405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.