These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19630794)

  • 1. Selective sorting of alpha-granule proteins.
    Italiano JE; Battinelli EM
    J Thromb Haemost; 2009 Jul; 7 Suppl 1(Suppl 1):173-6. PubMed ID: 19630794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet secretory behaviour: as diverse as the granules … or not?
    Heijnen H; van der Sluijs P
    J Thromb Haemost; 2015 Dec; 13(12):2141-51. PubMed ID: 26391322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the serum- and glucocorticoid-inducible kinase 1 on platelet dense granule biogenesis and secretion.
    Walker B; Schmid E; Russo A; Schmidt EM; Burk O; Münzer P; Velic A; Macek B; Schaller M; Schwab M; Seabra MC; Gawaz M; Lang F; Borst O
    J Thromb Haemost; 2015 Jul; 13(7):1325-34. PubMed ID: 25944668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STEM tomography reveals that the canalicular system and α-granules remain separate compartments during early secretion stages in blood platelets.
    Pokrovskaya ID; Aronova MA; Kamykowski JA; Prince AA; Hoyne JD; Calco GN; Kuo BC; He Q; Leapman RD; Storrie B
    J Thromb Haemost; 2016 Mar; 14(3):572-84. PubMed ID: 26663480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between calcium mobilization and platelet α- and δ-granule secretion. A role for TRPC6 in thrombin-evoked δ-granule exocytosis.
    Lopez E; Bermejo N; Berna-Erro A; Alonso N; Salido GM; Redondo PC; Rosado JA
    Arch Biochem Biophys; 2015 Nov; 585():75-81. PubMed ID: 26386308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-granule biogenesis: from disease to discovery.
    Chen CH; Lo RW; Urban D; Pluthero FG; Kahr WH
    Platelets; 2017 Mar; 28(2):147-154. PubMed ID: 28277061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of α-granule contents during platelet activation.
    Smith CW
    Platelets; 2022 May; 33(4):491-502. PubMed ID: 34569425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorting machineries: how platelet-dense granules differ from α-granules.
    Chen Y; Yuan Y; Li W
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30104399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntaxin 12 and COMMD3 are new factors that function with VPS33B in the biogenesis of platelet α-granules.
    Ambrosio AL; Febvre HP; Di Pietro SM
    Blood; 2022 Feb; 139(6):922-935. PubMed ID: 34905616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AP-3 adaptor functions in targeting P-selectin to secretory granules in endothelial cells.
    Daugherty BL; Straley KS; Sanders JM; Phillips JW; Disdier M; McEver RP; Green SA
    Traffic; 2001 Jun; 2(6):406-13. PubMed ID: 11389768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system.
    Ambrosio AL; Boyle JA; Di Pietro SM
    Blood; 2012 Nov; 120(19):4072-81. PubMed ID: 22927249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptotagmin-like protein 4 and Rab8 interact and increase dense granule release in platelets.
    Hampson A; O'Connor A; Smolenski A
    J Thromb Haemost; 2013 Jan; 11(1):161-8. PubMed ID: 23140275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet α-granule biogenesis.
    Urban D; Li L; Christensen H; Pluthero FG; Chen SZ; Puhacz M; Garg PM; Lanka KK; Cummings JJ; Kramer H; Wasmuth JD; Parkinson J; Kahr WH
    Blood; 2012 Dec; 120(25):5032-40. PubMed ID: 23002115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of platelet phenotype in mice lacking the motor protein myosin Va.
    Harper MT; van den Bosch MT; Hers I; Poole AW
    PLoS One; 2013; 8(1):e53239. PubMed ID: 23349704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Munc13-4 is a limiting factor in the pathway required for platelet granule release and hemostasis.
    Ren Q; Wimmer C; Chicka MC; Ye S; Ren Y; Hughson FM; Whiteheart SW
    Blood; 2010 Aug; 116(6):869-77. PubMed ID: 20435885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus formation in mice.
    Woulfe DS; Lilliendahl JK; August S; Rauova L; Kowalska MA; Abrink M; Pejler G; White JG; Schick BP
    Blood; 2008 Apr; 111(7):3458-67. PubMed ID: 18094327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7.
    Peters CG; Michelson AD; Flaumenhaft R
    Blood; 2012 Jul; 120(1):199-206. PubMed ID: 22589474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different G protein-coupled signaling pathways are involved in alpha granule release from human platelets.
    Quinton TM; Murugappan S; Kim S; Jin J; Kunapuli SP
    J Thromb Haemost; 2004 Jun; 2(6):978-84. PubMed ID: 15140134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet dense granule secretion defects may obscure α-granule secretion mechanisms: evidence from Munc13-4-deficient platelets.
    Harper MT; van den Bosch MT; Hers I; Poole AW
    Blood; 2015 May; 125(19):3034-6. PubMed ID: 25953980
    [No Abstract]   [Full Text] [Related]  

  • 20. CGX1037 is a novel PKC isoform delta selective inhibitor in platelets.
    Bhavanasi D; Kostyak JC; Swindle J; Kilpatrick LE; Kunapuli SP
    Platelets; 2015; 26(1):2-9. PubMed ID: 24433221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.