These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19631117)

  • 1. Increased risk for flap dislocation with perioperative brimonidine use in femtosecond laser in situ keratomileusis.
    Muñoz G; Albarrán-Diego C; Sakla HF; Javaloy J
    J Cataract Refract Surg; 2009 Aug; 35(8):1338-42. PubMed ID: 19631117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early flap dislocation with perioperative brimonidine use in laser in situ keratomileusis.
    Nowroozzadeh MH
    J Cataract Refract Surg; 2010 Feb; 36(2):368. PubMed ID: 20152647
    [No Abstract]   [Full Text] [Related]  

  • 3. Use of brimonidine before LASIK with femtosecond laser-created flaps for the correction of myopia: a contralateral eye study.
    Rodríguez-Galietero A; Martínez JV; Del Buey A; Bescós JA
    J Refract Surg; 2010 Jan; 26(1):28-32. PubMed ID: 20199009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Epi-LASIK and off-flap Epi-LASIK for the treatment of low and moderate myopia.
    Kalyvianaki MI; Kymionis GD; Kounis GA; Panagopoulou SI; Grentzelos MA; Pallikaris IG
    Ophthalmology; 2008 Dec; 115(12):2174-80. PubMed ID: 19041475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond laser in situ keratomileusis for consecutive hyperopia after radial keratotomy.
    Muñoz G; Albarrán-Diego C; Sakla HF; Javaloy J
    J Cataract Refract Surg; 2007 Jul; 33(7):1183-9. PubMed ID: 17586373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thresholds for interface haze formation after thin-flap femtosecond laser in situ keratomileusis for myopia.
    Rocha KM; Kagan R; Smith SD; Krueger RR
    Am J Ophthalmol; 2009 Jun; 147(6):966-72, 972.e1. PubMed ID: 19327748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of corneal curvature change after mechanical laser in situ keratomileusis flap creation and femtosecond laser flap creation.
    Ortiz D; Alió JL; Piñero D
    J Cataract Refract Surg; 2008 Feb; 34(2):238-42. PubMed ID: 18242446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.
    Mian SI; Li AY; Dutta S; Musch DC; Shtein RM
    J Cataract Refract Surg; 2009 Dec; 35(12):2092-8. PubMed ID: 19969213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dilute brimonidine to improve patient comfort and subconjunctival hemorrhage after LASIK.
    Pasquali TA; Aufderheide A; Brinton JP; Avila MR; Stahl ED; Durrie DS
    J Refract Surg; 2013 Jul; 29(7):469-75. PubMed ID: 23820229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study.
    Durrie DS; Kezirian GM
    J Cataract Refract Surg; 2005 Jan; 31(1):120-6. PubMed ID: 15721704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single versus double femtosecond laser pass for incomplete laser in situ keratomileusis flap in contralateral eyes: visual and optical outcomes.
    Muñoz G; Albarrán-Diego C; Ferrer-Blasco T; Javaloy J; García-Lázaro S
    J Cataract Refract Surg; 2012 Jan; 38(1):8-15. PubMed ID: 22153090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser versus mechanical keratome LASIK for myopia.
    Montés-Micó R; Rodríguez-Galietero A; Alió JL
    Ophthalmology; 2007 Jan; 114(1):62-8. PubMed ID: 17070593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy, safety, and flap dimensions of a new femtosecond laser for laser in situ keratomileusis.
    Vryghem JC; Devogelaere T; Stodulka P
    J Cataract Refract Surg; 2010 Mar; 36(3):442-8. PubMed ID: 20202543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the refractive index of the human corneal stroma during laser in situ keratomileusis. Effects of exposure time and method used to create the flap.
    Patel S; Alió JL; Artola A
    J Cataract Refract Surg; 2008 Jul; 34(7):1077-82. PubMed ID: 18571072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective contralateral eye study to compare 80- and 120-μm flap LASIK using the VisuMax femtosecond laser.
    Lim DH; Keum JE; Ju WK; Lee JH; Chung TY; Chung ES
    J Refract Surg; 2013 Jul; 29(7):462-8. PubMed ID: 23820228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spherical and aspherical photorefractive keratectomy and laser in-situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group.
    Steinert RF; Hersh PS
    Trans Am Ophthalmol Soc; 1998; 96():197-221; discussion 221-7. PubMed ID: 10360290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early flap displacement after LASIK.
    Clare G; Moore TC; Grills C; Leccisotti A; Moore JE; Schallhorn S
    Ophthalmology; 2011 Sep; 118(9):1760-5. PubMed ID: 21550119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia.
    El-Maghraby A; Salah T; Waring GO; Klyce S; Ibrahim O
    Ophthalmology; 1999 Mar; 106(3):447-57. PubMed ID: 10080199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prospective, contralateral eye study comparing thin-flap LASIK (sub-Bowman keratomileusis) with photorefractive keratectomy.
    Slade SG; Durrie DS; Binder PS
    Ophthalmology; 2009 Jun; 116(6):1075-82. PubMed ID: 19486798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of neuroprotective qualities of brimonidine during LASIK.
    McCarty TM; Hardten DR; Anderson NJ; Rosheim K; Samuelson TW
    Ophthalmology; 2003 Aug; 110(8):1615-25. PubMed ID: 12917182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.