These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
826 related articles for article (PubMed ID: 19631223)
1. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. Hawwa R; Larsen SD; Ratia K; Mesecar AD J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Zhang Y; An J; Ye W; Yang G; Qian ZG; Chen HF; Cui L; Feng Y Appl Environ Microbiol; 2012 Sep; 78(18):6647-55. PubMed ID: 22798358 [TBL] [Abstract][Full Text] [Related]
3. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
4. The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis. Ely F; Hadler KS; Gahan LR; Guddat LW; Ollis DL; Schenk G Biochem J; 2010 Dec; 432(3):565-73. PubMed ID: 20868365 [TBL] [Abstract][Full Text] [Related]
5. Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Xiang DF; Kolb P; Fedorov AA; Meier MM; Fedorov LV; Nguyen TT; Sterner R; Almo SC; Shoichet BK; Raushel FM Biochemistry; 2009 Mar; 48(10):2237-47. PubMed ID: 19159332 [TBL] [Abstract][Full Text] [Related]
6. Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Luo XJ; Kong XD; Zhao J; Chen Q; Zhou J; Xu JH Biotechnol Bioeng; 2014 Oct; 111(10):1920-30. PubMed ID: 24771278 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. Mee-Hie Cho C; Mulchandani A; Chen W Protein Eng Des Sel; 2006 Mar; 19(3):99-105. PubMed ID: 16423845 [TBL] [Abstract][Full Text] [Related]
8. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library. Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402 [TBL] [Abstract][Full Text] [Related]
9. Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. Meier MM; Rajendran C; Malisi C; Fox NG; Xu C; Schlee S; Barondeau DP; Höcker B; Sterner R; Raushel FM J Am Chem Soc; 2013 Aug; 135(31):11670-7. PubMed ID: 23837603 [TBL] [Abstract][Full Text] [Related]
10. A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Porzio E; Merone L; Mandrich L; Rossi M; Manco G Biochimie; 2007 May; 89(5):625-36. PubMed ID: 17337320 [TBL] [Abstract][Full Text] [Related]
11. Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. McLoughlin SY; Jackson C; Liu JW; Ollis D Protein Expr Purif; 2005 Jun; 41(2):433-40. PubMed ID: 15866732 [TBL] [Abstract][Full Text] [Related]
12. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. Hill CM; Li WS; Thoden JB; Holden HM; Raushel FM J Am Chem Soc; 2003 Jul; 125(30):8990-1. PubMed ID: 15369336 [TBL] [Abstract][Full Text] [Related]
13. Update on biochemical properties of recombinant Pseudomonas diminuta phosphotriesterase. Carletti E; Jacquamet L; Loiodice M; Rochu D; Masson P; Nachon F J Enzyme Inhib Med Chem; 2009 Aug; 24(4):1045-55. PubMed ID: 19548794 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for catalytic racemization and substrate specificity of an N-acylamino acid racemase homologue from Deinococcus radiodurans. Wang WC; Chiu WC; Hsu SK; Wu CL; Chen CY; Liu JS; Hsu WH J Mol Biol; 2004 Sep; 342(1):155-69. PubMed ID: 15313614 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146 [TBL] [Abstract][Full Text] [Related]
16. Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Yang H; Carr PD; McLoughlin SY; Liu JW; Horne I; Qiu X; Jeffries CM; Russell RJ; Oakeshott JG; Ollis DL Protein Eng; 2003 Feb; 16(2):135-45. PubMed ID: 12676982 [TBL] [Abstract][Full Text] [Related]
17. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Ghanem E; Raushel FM Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683 [TBL] [Abstract][Full Text] [Related]
18. Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro. Goldsmith M; Eckstein S; Ashani Y; Greisen P; Leader H; Sussman JL; Aggarwal N; Ovchinnikov S; Tawfik DS; Baker D; Thiermann H; Worek F Arch Toxicol; 2016 Nov; 90(11):2711-2724. PubMed ID: 26612364 [TBL] [Abstract][Full Text] [Related]
19. Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Lisurek M; Simgen B; Antes I; Bernhardt R Chembiochem; 2008 Jun; 9(9):1439-49. PubMed ID: 18481342 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance. Rajan R; Bell CE J Mol Biol; 2004 Dec; 344(4):951-63. PubMed ID: 15544805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]