These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19631273)

  • 1. Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey.
    Tanji K; Leopold DA; Ye FQ; Zhu C; Malloy M; Saunders RC; Mishkin M
    Neuroimage; 2010 Jan; 49(1):150-7. PubMed ID: 19631273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.
    Kikuchi Y; Horwitz B; Mishkin M
    J Neurosci; 2010 Sep; 30(39):13021-30. PubMed ID: 20881120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional maps of human auditory cortex: effects of acoustic features and attention.
    Woods DL; Stecker GC; Rinne T; Herron TJ; Cate AD; Yund EW; Liao I; Kang X
    PLoS One; 2009; 4(4):e5183. PubMed ID: 19365552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-field fMRI reveals tonotopically-organized and core auditory cortex in the cat.
    Hall AJ; Lomber SG
    Hear Res; 2015 Jul; 325():1-11. PubMed ID: 25776742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals.
    Schönwiesner M; Dechent P; Voit D; Petkov CI; Krumbholz K
    Cereb Cortex; 2015 Oct; 25(10):3278-89. PubMed ID: 24904067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interhemispheric differences in auditory processing revealed by fMRI in awake rhesus monkeys.
    Joly O; Ramus F; Pressnitzer D; Vanduffel W; Orban GA
    Cereb Cortex; 2012 Apr; 22(4):838-53. PubMed ID: 21709178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey.
    Rauschecker JP; Tian B
    J Neurophysiol; 2004 Jun; 91(6):2578-89. PubMed ID: 15136602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey.
    Kajikawa Y; Frey S; Ross D; Falchier A; Hackett TA; Schroeder CE
    J Neurosci; 2015 Mar; 35(10):4140-50. PubMed ID: 25762661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.
    Dick FK; Lehet MI; Callaghan MF; Keller TA; Sereno MI; Holt LL
    J Neurosci; 2017 Dec; 37(50):12187-12201. PubMed ID: 29109238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys.
    Hackett TA; Stepniewska I; Kaas JH
    J Comp Neurol; 1998 May; 394(4):475-95. PubMed ID: 9590556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sound Frequency Representation in the Auditory Cortex of the Common Marmoset Visualized Using Optical Intrinsic Signal Imaging.
    Tani T; Abe H; Hayami T; Banno T; Miyakawa N; Kitamura N; Mashiko H; Ichinohe N; Suzuki W
    eNeuro; 2018; 5(2):. PubMed ID: 29736410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.
    Fukushima M; Saunders RC; Leopold DA; Mishkin M; Averbeck BB
    Neuron; 2012 Jun; 74(5):899-910. PubMed ID: 22681693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirror-symmetric tonotopic maps in human primary auditory cortex.
    Formisano E; Kim DS; Di Salle F; van de Moortele PF; Ugurbil K; Goebel R
    Neuron; 2003 Nov; 40(4):859-69. PubMed ID: 14622588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation.
    Langers DR; van Dijk P
    Cereb Cortex; 2012 Sep; 22(9):2024-38. PubMed ID: 21980020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional magnetic resonance imaging of auditory cortical fields in awake marmosets.
    Toarmino CR; Yen CCC; Papoti D; Bock NA; Leopold DA; Miller CT; Silva AC
    Neuroimage; 2017 Nov; 162():86-92. PubMed ID: 28830766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representations of Pitch and Timbre Variation in Human Auditory Cortex.
    Allen EJ; Burton PC; Olman CA; Oxenham AJ
    J Neurosci; 2017 Feb; 37(5):1284-1293. PubMed ID: 28025255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys.
    Kosaki H; Hashikawa T; He J; Jones EG
    J Comp Neurol; 1997 Sep; 386(2):304-16. PubMed ID: 9295154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional imaging of human auditory cortex.
    Woods DL; Alain C
    Curr Opin Otolaryngol Head Neck Surg; 2009 Oct; 17(5):407-11. PubMed ID: 19633556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory figure-ground analysis in rostral belt and parabelt of the macaque monkey.
    Schneider F; Dheerendra P; Balezeau F; Ortiz-Rios M; Kikuchi Y; Petkov CI; Thiele A; Griffiths TD
    Sci Rep; 2018 Dec; 8(1):17948. PubMed ID: 30560879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is it tonotopy after all?
    Schönwiesner M; von Cramon DY; Rübsamen R
    Neuroimage; 2002 Nov; 17(3):1144-61. PubMed ID: 12414256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.