BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19631278)

  • 21. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi.
    Vannelli T; Wei Qi W; Sweigard J; Gatenby AA; Sariaslani FS
    Metab Eng; 2007 Mar; 9(2):142-51. PubMed ID: 17204442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae.
    Wang Y; Shi WL; Liu XY; Shen Y; Bao XM; Bai FW; Qu YB
    Biotechnol Lett; 2004 Jun; 26(11):885-90. PubMed ID: 15269535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids.
    Levisson M; Araya-Cloutier C; de Bruijn WJC; van der Heide M; Salvador López JM; Daran JM; Vincken JP; Beekwilder J
    J Agric Food Chem; 2019 Dec; 67(49):13478-13486. PubMed ID: 31016981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones.
    Kallscheuer N; Vogt M; Stenzel A; Gätgens J; Bott M; Marienhagen J
    Metab Eng; 2016 Nov; 38():47-55. PubMed ID: 27288926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of 5-deoxyflavanones in microorganisms.
    Yan Y; Huang L; Koffas MA
    Biotechnol J; 2007 Oct; 2(10):1250-62. PubMed ID: 17806100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells.
    Wang Y; Yu O
    J Biotechnol; 2012 Jan; 157(1):258-60. PubMed ID: 22100267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol.
    Lyu X; Zhao G; Ng KR; Mark R; Chen WN
    J Agric Food Chem; 2019 May; 67(19):5596-5606. PubMed ID: 30957490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae.
    Lyu X; Ng KR; Lee JL; Mark R; Chen WN
    J Agric Food Chem; 2017 Aug; 65(31):6638-6646. PubMed ID: 28707470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling selectivity and enhancing yield of flavonoid glycosides in recombinant yeast.
    Werner SR; Morgan JA
    Bioprocess Biosyst Eng; 2010 Sep; 33(7):863-71. PubMed ID: 20148267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of malolactic wine yeast.
    Husnik JI; Volschenk H; Bauer J; Colavizza D; Luo Z; van Vuuren HJ
    Metab Eng; 2006 Jul; 8(4):315-23. PubMed ID: 16621641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of Saccharomyces cerevisiae for the production of L-glycerol 3-phosphate.
    Nguyen HT; Dieterich A; Athenstaedt K; Truong NH; Stahl U; Nevoigt E
    Metab Eng; 2004 Apr; 6(2):155-63. PubMed ID: 15113568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid.
    Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):795-807. PubMed ID: 18563655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid.
    Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Appl Biochem Biotechnol; 2006; 129-132():795-807. PubMed ID: 16915689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
    Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS
    Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits.
    Ogo Y; Ozawa K; Ishimaru T; Murayama T; Takaiwa F
    Plant Biotechnol J; 2013 Aug; 11(6):734-46. PubMed ID: 23551455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.
    Sandoval CM; Ayson M; Moss N; Lieu B; Jackson P; Gaucher SP; Horning T; Dahl RH; Denery JR; Abbott DA; Meadows AL
    Metab Eng; 2014 Sep; 25():215-26. PubMed ID: 25076380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.