BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 19631302)

  • 1. Reduced physical activity corresponds with greater bone loss at the trabecular than the cortical bone sites in men.
    Tervo T; Nordström P; Neovius M; Nordström A
    Bone; 2009 Dec; 45(6):1073-8. PubMed ID: 19631302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone loss and fracture risk after reduced physical activity.
    Nordström A; Karlsson C; Nyquist F; Olsson T; Nordström P; Karlsson M
    J Bone Miner Res; 2005 Feb; 20(2):202-7. PubMed ID: 15647813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males.
    Gustavsson A; Thorsen K; Nordström P
    Calcif Tissue Int; 2003 Aug; 73(2):108-14. PubMed ID: 14565591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant adaptation of bone to current physical activity level in men: a 12-year longitudinal study.
    Tervo T; Nordström P; Neovius M; Nordström A
    J Clin Endocrinol Metab; 2008 Dec; 93(12):4873-9. PubMed ID: 18827001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study.
    Lorentzon M; Mellström D; Ohlsson C
    J Bone Miner Res; 2005 Nov; 20(11):1936-43. PubMed ID: 16234966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced training is associated with increased loss of BMD.
    Valdimarsson O; Alborg HG; Düppe H; Nyquist F; Karlsson M
    J Bone Miner Res; 2005 Jun; 20(6):906-12. PubMed ID: 15883629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained benefits from previous physical activity on bone mineral density in males.
    Nordström A; Olsson T; Nordström P
    J Clin Endocrinol Metab; 2006 Jul; 91(7):2600-4. PubMed ID: 16636124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study.
    Rudäng R; Darelid A; Nilsson M; Nilsson S; Mellström D; Ohlsson C; Lorentzon M
    J Bone Miner Res; 2012 Oct; 27(10):2189-97. PubMed ID: 22653676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations of genetic lactase non-persistence and sex with bone loss in young adulthood.
    Laaksonen MM; Impivaara O; Sievänen H; Viikari JS; Lehtimäki TJ; Lamberg-Allardt CJ; Kärkkäinen MU; Välimäki M; Heikkinen J; Kröger LM; Kröger HP; Jurvelin JS; Kähönen MA; Raitakari OT;
    Bone; 2009 May; 44(5):1003-9. PubMed ID: 19168163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do sporting activities convey benefits to bone mass throughout the skeleton?
    Nevill A; Holder R; Stewart A
    J Sports Sci; 2004 Jul; 22(7):645-50. PubMed ID: 15370495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced bone mineral density in young adults following cure of acute lymphoblastic leukaemia in childhood.
    Brennan BM; Rahim A; Adams JA; Eden OB; Shalet SM
    Br J Cancer; 1999 Apr; 79(11-12):1859-63. PubMed ID: 10206305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone gained from physical activity and lost through detraining: a longitudinal study in young males.
    Nordström A; Olsson T; Nordström P
    Osteoporos Int; 2005 Jul; 16(7):835-41. PubMed ID: 15517188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between changes in habitual physical activity and changes in bone density, muscle strength, and functional performance in elderly men and women.
    Daly RM; Ahlborg HG; Ringsberg K; Gardsell P; Sernbo I; Karlsson MK
    J Am Geriatr Soc; 2008 Dec; 56(12):2252-60. PubMed ID: 19016934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern of periprosthetic bone remodeling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA.
    Aldinger PR; Sabo D; Pritsch M; Thomsen M; Mau H; Ewerbeck V; Breusch SJ
    Calcif Tissue Int; 2003 Aug; 73(2):115-21. PubMed ID: 14565592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in bone mineral density and body composition in survivors of childhood acute lymphoblastic leukemia: a 1-year prospective study.
    Marinovic D; Dorgeret S; Lescoeur B; Alberti C; Noel M; Czernichow P; Sebag G; Vilmer E; Léger J
    Pediatrics; 2005 Jul; 116(1):e102-8. PubMed ID: 15995009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between physical activity and physical capacity in adolescent females and bone mass in adulthood.
    Barnekow-Bergkvist M; Hedberg G; Pettersson U; Lorentzon R
    Scand J Med Sci Sports; 2006 Dec; 16(6):447-55. PubMed ID: 17121648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of different types of weight-bearing loading on bone mass and size in young males: a longitudinal study.
    Nordström A; Högström M; Nordström P
    Bone; 2008 Mar; 42(3):565-71. PubMed ID: 18191629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current physical activity is related to bone mineral density in males but not in females.
    Högström M; Nordström A; Alfredson H; Lorentzon R; Thorsen K; Nordström P
    Int J Sports Med; 2007 May; 28(5):431-6. PubMed ID: 17111323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between vitamin D metabolites and bone mineral density in young males: a cross-sectional and longitudinal study.
    Högström M; Nordström A; Nordström P
    Calcif Tissue Int; 2006 Aug; 79(2):95-101. PubMed ID: 16927046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone mineral density in postmenarchal adolescent girls in the United States: associated biopsychosocial variables and bone turnover markers.
    Harel Z; Gold M; Cromer B; Bruner A; Stager M; Bachrach L; Wolter K; Reid C; Hertweck P; Nelson A; Nelson D; Coupey S; Johnson C; Burkman R; Bone H
    J Adolesc Health; 2007 Jan; 40(1):44-53. PubMed ID: 17185205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.