BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1172 related articles for article (PubMed ID: 19631521)

  • 21. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification.
    Wang Q; Yang X; Yang X; Liu P; Wang K; Huang J; Liu J; Song C; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():283-7. PubMed ID: 25448931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature.
    Liu D; Qu W; Chen W; Zhang W; Wang Z; Jiang X
    Anal Chem; 2010 Dec; 82(23):9606-10. PubMed ID: 21069969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor.
    Huang CC; Tseng WL
    Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution.
    Chiang CK; Huang CC; Liu CW; Chang HT
    Anal Chem; 2008 May; 80(10):3716-21. PubMed ID: 18363331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions.
    Li B; Du Y; Dong S
    Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct colorimetric visualization of mercury (Hg2+) based on the formation of gold nanoparticles.
    Fan A; Ling Y; Lau C; Lu J
    Talanta; 2010 Jul; 82(2):687-92. PubMed ID: 20602955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.
    Zhu Z; Su Y; Li J; Li D; Zhang J; Song S; Zhao Y; Li G; Fan C
    Anal Chem; 2009 Sep; 81(18):7660-6. PubMed ID: 19691296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors.
    Zhao W; Lam JC; Chiuman W; Brook MA; Li Y
    Small; 2008 Jun; 4(6):810-6. PubMed ID: 18537135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution.
    Huang CC; Chang HT
    Anal Chem; 2006 Dec; 78(24):8332-8. PubMed ID: 17165824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines.
    Li D; Wieckowska A; Willner I
    Angew Chem Int Ed Engl; 2008; 47(21):3927-31. PubMed ID: 18404745
    [No Abstract]   [Full Text] [Related]  

  • 31. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II).
    Liu CW; Huang CC; Chang HT
    Langmuir; 2008 Aug; 24(15):8346-50. PubMed ID: 18582003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-induced aggregation of mononucleotides-stabilized gold nanoparticles: an efficient approach for simple and rapid colorimetric detection of Hg(II).
    Xu Y; Deng L; Wang H; Ouyang X; Zheng J; Li J; Yang R
    Chem Commun (Camb); 2011 Jun; 47(21):6039-41. PubMed ID: 21528141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mercaptothiadiazole capped gold nanoparticles as fluorophore for the determination of nanomolar mercury(II) in aqueous solution in the presence of 50,000-fold major interferents.
    Vasimalai N; John SA
    Analyst; 2012 Jul; 137(14):3349-54. PubMed ID: 22685704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paper-based bioassays using gold nanoparticle colorimetric probes.
    Zhao W; Ali MM; Aguirre SD; Brook MA; Li Y
    Anal Chem; 2008 Nov; 80(22):8431-7. PubMed ID: 18847216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface.
    Hirayama T; Taki M; Kashiwagi Y; Nakamoto M; Kunishita A; Itoh S; Yamamoto Y
    Dalton Trans; 2008 Sep; (35):4705-7. PubMed ID: 18728875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A test strip platform based on DNA-functionalized gold nanoparticles for on-site detection of mercury (II) ions.
    Guo Z; Duan J; Yang F; Li M; Hao T; Wang S; Wei D
    Talanta; 2012 May; 93():49-54. PubMed ID: 22483875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media.
    Kim YR; Mahajan RK; Kim JS; Kim H
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):292-5. PubMed ID: 20356248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance.
    Sheng Z; Han J; Zhang J; Zhao H; Jiang L
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):289-92. PubMed ID: 21700432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes.
    Li T; Dong S; Wang E
    Anal Chem; 2009 Mar; 81(6):2144-9. PubMed ID: 19227981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Label-free, sensitive detection of Hg(II) with gold nanoparticles by using dynamic light scattering technique.
    Xiong C; Ling L
    Talanta; 2012 Jan; 89():317-21. PubMed ID: 22284498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.