BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19631987)

  • 1. Deep sequencing of the zebrafish transcriptome response to mycobacterium infection.
    Hegedus Z; Zakrzewska A; Agoston VC; Ordas A; Rácz P; Mink M; Spaink HP; Meijer AH
    Mol Immunol; 2009 Sep; 46(15):2918-30. PubMed ID: 19631987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection.
    Meijer AH; Verbeek FJ; Salas-Vidal E; Corredor-Adámez M; Bussman J; van der Sar AM; Otto GW; Geisler R; Spaink HP
    Mol Immunol; 2005 Jun; 42(10):1185-203. PubMed ID: 15829308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection.
    Ordas A; Hegedus Z; Henkel CV; Stockhammer OW; Butler D; Jansen HJ; Racz P; Mink M; Spaink HP; Meijer AH
    Fish Shellfish Immunol; 2011 Nov; 31(5):716-24. PubMed ID: 20816807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components.
    van der Sar AM; Spaink HP; Zakrzewska A; Bitter W; Meijer AH
    Mol Immunol; 2009 Jul; 46(11-12):2317-32. PubMed ID: 19409617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profile analysis of porcine adipose tissue by high-throughput sequencing.
    Li XJ; Yang H; Li GX; Zhang GH; Cheng J; Guan H; Yang GS
    Anim Genet; 2012 Apr; 43(2):144-52. PubMed ID: 22404350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of porcine transcriptional response to Salmonella enterica serovar Choleraesuis suggests novel targets of NFkappaB are activated in the mesenteric lymph node.
    Wang Y; Couture OP; Qu L; Uthe JJ; Bearson SM; Kuhar D; Lunney JK; Nettleton D; Dekkers JC; Tuggle CK
    BMC Genomics; 2008 Sep; 9():437. PubMed ID: 18811943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection.
    Stockhammer OW; Zakrzewska A; Hegedûs Z; Spaink HP; Meijer AH
    J Immunol; 2009 May; 182(9):5641-53. PubMed ID: 19380811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish and frog models of Mycobacterium marinum infection.
    Cosma CL; Swaim LE; Volkman H; Ramakrishnan L; Davis JM
    Curr Protoc Microbiol; 2006 Dec; Chapter 10():Unit 10B.2. PubMed ID: 18770575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos.
    Stockhammer OW; Rauwerda H; Wittink FR; Breit TM; Meijer AH; Spaink HP
    Mol Immunol; 2010; 48(1-3):179-90. PubMed ID: 20851470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis.
    Tobin DM; Ramakrishnan L
    Cell Microbiol; 2008 May; 10(5):1027-39. PubMed ID: 18298637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection.
    Hu W; Yang S; Shimada Y; Münch M; Marín-Juez R; Meijer AH; Spaink HP
    BMC Genomics; 2019 Nov; 20(1):878. PubMed ID: 31747871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarrays and high-throughput transcriptomic analysis in species with incomplete availability of genomic sequences.
    Pariset L; Chillemi G; Bongiorni S; Romano Spica V; Valentini A
    N Biotechnol; 2009 Jun; 25(5):272-9. PubMed ID: 19446516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling and digital gene expression by deep-sequencing in normal/regenerative tissues of planarian Dugesia japonica.
    Qin YF; Fang HM; Tian QN; Bao ZX; Lu P; Zhao JM; Mai J; Zhu ZY; Shu LL; Zhao L; Chen SJ; Liang F; Zhang YZ; Zhang ST
    Genomics; 2011 Jun; 97(6):364-71. PubMed ID: 21333733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver.
    Lam SH; Winata CL; Tong Y; Korzh S; Lim WS; Korzh V; Spitsbergen J; Mathavan S; Miller LD; Liu ET; Gong Z
    Physiol Genomics; 2006 Nov; 27(3):351-61. PubMed ID: 16882884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New models for the study of Mycobacterium-host interactions.
    Pozos TC; Ramakrishnan L
    Curr Opin Immunol; 2004 Aug; 16(4):499-505. PubMed ID: 15245746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial analysis of gene expression: probing transcriptomes for molecular targets.
    Lal A; Sui IM; Riggins GJ
    Curr Opin Mol Ther; 1999 Dec; 1(6):720-6. PubMed ID: 19629869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large scale identification of genes involved in plant-fungal interactions using Illumina's sequencing-by-synthesis technology.
    Venu RC; Zhang Y; Weaver B; Carswell P; Mitchell TK; Meyers BC; Boehm MJ; Wang GL
    Methods Mol Biol; 2011; 722():167-78. PubMed ID: 21590420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technology for high-throughput screens: the present and future using zebrafish.
    Love DR; Pichler FB; Dodd A; Copp BR; Greenwood DR
    Curr Opin Biotechnol; 2004 Dec; 15(6):564-71. PubMed ID: 15560983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression.
    Bielecki P; Glik J; Kawecki M; Martins dos Santos VA
    Biotechnol Lett; 2008 May; 30(5):777-90. PubMed ID: 18158583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analyses in the interaction of Neisseria meningitidis with mammalian host cells.
    Schubert-Unkmeir A; Schramm-Glück A; Frosch M; Schoen C
    Methods Mol Biol; 2009; 470():5-27. PubMed ID: 19089372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.