These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19632040)

  • 1. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries.
    Agrawal A; Sahu KK
    J Hazard Mater; 2009 Nov; 171(1-3):61-75. PubMed ID: 19632040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.
    Dutra AJ; Rocha GP; Pombo FR
    J Hazard Mater; 2008 Apr; 152(2):648-55. PubMed ID: 17728063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste minimization in electroplating industries: a review.
    Babu BR; Bhanu SU; Meera KS
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2009 Jul; 27(3):155-77. PubMed ID: 19657919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.
    Juang RS; Kao HC; Liu FY
    J Hazard Mater; 2006 Jan; 128(1):53-9. PubMed ID: 16125313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of lead from lead electroplating industrial effluent using sago waste.
    Jeyanthi GP; Shanthi G
    J Environ Sci Eng; 2007 Jan; 49(1):13-6. PubMed ID: 18472553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.
    Ghare NY; Wani KS; Patil VS
    J Environ Sci Eng; 2013 Apr; 55(2):253-66. PubMed ID: 25464702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behavior of organic components in copper recovery from electroless plating bath effluents using 3D electrode systems.
    Orhan G; Gürmen S; Timur S
    J Hazard Mater; 2004 Aug; 112(3):261-7. PubMed ID: 15302447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.
    Valverde IM; Paulino JF; Afonso JC
    J Hazard Mater; 2008 Dec; 160(2-3):310-7. PubMed ID: 18400377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of EDTA from complex solution using Cu(II) as precipitant and Cu(II) subsequent removal by electrolysis.
    Gyliene O; Aikaite J; Nivinskiene O
    J Hazard Mater; 2004 Dec; 116(1-2):119-24. PubMed ID: 15561370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.
    Silva MA; Mater L; Souza-Sierra MM; Corrêa AX; Sperb R; Radetski CM
    J Hazard Mater; 2007 Aug; 147(3):986-90. PubMed ID: 17331640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero Liquid Discharge approach in plating industry: treatment of degreasing effluents by electrocoagulation and anodic oxidation.
    Hermon S; Grange D; Pellet Y; Lloret G; Oyonarte S; Bosch F; Coste M
    Water Sci Technol; 2008; 58(3):519-27. PubMed ID: 18725717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial biomass: an economical alternative for removal of heavy metals from waste water.
    Gupta R; Mohapatra H
    Indian J Exp Biol; 2003 Sep; 41(9):945-66. PubMed ID: 15242288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and leaching characteristics of sludge generated from metal pickling and electroplating industries by Toxicity Characteristics Leaching Procedure (TCLP).
    Vijay R; Sihorwala TA
    Environ Monit Assess; 2003 Jun; 84(3):193-202. PubMed ID: 12807260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on methods of regeneration of spent pickling solutions from steel processing.
    Regel-Rosocka M
    J Hazard Mater; 2010 May; 177(1-3):57-69. PubMed ID: 20056321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality of effluents from Hattar Industrial Estate.
    Sial RA; Chaudhary MF; Abbas ST; Latif MI; Khan AG
    J Zhejiang Univ Sci B; 2006 Dec; 7(12):974-80. PubMed ID: 17111466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.
    Peng C; Liu Y; Bi J; Xu H; Ahmed AS
    J Hazard Mater; 2011 May; 189(3):814-20. PubMed ID: 21466914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.