These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1963213)

  • 21. Selective inhibition of synaptic versus non-synaptic epileptogenesis by NMDA antagonists in the in vitro hippocampus.
    Ashton D; Willems R; De Prins E; Wauquier A
    Epilepsy Res; 1988; 2(3):219-22. PubMed ID: 2848699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiation of sigma ligand-activated receptor subtypes that modulate NMDA-evoked [3H]-noradrenaline release in rat hippocampal slices.
    Monnet FP; de Costa BR; Bowen WD
    Br J Pharmacol; 1996 Sep; 119(1):65-72. PubMed ID: 8872358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Persistent pulsatile release of glutamate induced by N-methyl-D-aspartate in neonatal rat hippocampal neurones.
    Cherubini E; Ben-Ari Y; Ito S; Krnjević K
    J Physiol; 1991 May; 436():531-47. PubMed ID: 1676421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the NMDA receptor subunit in the expression of the discriminative stimulus effect induced by ketamine.
    Narita M; Yoshizawa K; Nomura M; Aoki K; Suzuki T
    Eur J Pharmacol; 2001 Jun; 423(1):41-6. PubMed ID: 11438305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors.
    Fink K; Schultheiss R; Göthert M
    Br J Pharmacol; 1992 May; 106(1):67-72. PubMed ID: 1380384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacology of N-methyl-D-aspartate-induced brain injury in an in vivo perinatal rat model.
    McDonald JW; Johnston MV
    Synapse; 1990; 6(2):179-88. PubMed ID: 1978420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area.
    Martin D; Bustos GA; Bowe MA; Bray SD; Nadler JV
    J Neurochem; 1991 May; 56(5):1647-55. PubMed ID: 1672884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of excitatory amino acid receptors cannot alone account for anoxia-induced impairment of protein synthesis in rat hippocampal slices.
    Carter AJ; Müller RE
    J Neurochem; 1991 Sep; 57(3):888-96. PubMed ID: 1677679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMPA and NMDA receptor antagonists do not decrease hippocampal glutamate concentrations during transient global ischemia.
    Matsumoto M; Zornow MH; Scheller MS; Strnat MA
    Anesthesiology; 1992 Oct; 77(4):764-71. PubMed ID: 1358005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of NMDA receptor antagonists and body temperature in the gerbil carotid occlusion model of transient forebrain ischemia.
    Warner MA; Nadler JV; Crain BJ
    Prog Clin Biol Res; 1990; 361():409-14. PubMed ID: 2149762
    [No Abstract]   [Full Text] [Related]  

  • 31. Enhanced calcium uptake by CA1 pyramidal cell dendrites in the postischemic phase despite subnormal evoked field potentials: excitatory amino acid receptor dependency and relationship to neuronal damage.
    Andiné P; Jacobson I; Hagberg H
    J Cereb Blood Flow Metab; 1992 Sep; 12(5):773-83. PubMed ID: 1324252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct neuroprotective profiles for sigma ligands against N-methyl-D-aspartate (NMDA), and hypoxia-mediated neurotoxicity in neuronal culture toxicity studies.
    Lockhart BP; Soulard P; Benicourt C; Privat A; Junien JL
    Brain Res; 1995 Mar; 675(1-2):110-20. PubMed ID: 7796119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for postsynaptic induction and expression of NMDA receptor independent LTP.
    Grover LM
    J Neurophysiol; 1998 Mar; 79(3):1167-82. PubMed ID: 9497399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamate stimulation of tyrosine hydroxylase is mediated by NMDA receptors in the rat striatum.
    Arias-Montaño JA; Martínez-Fong D; Aceves J
    Brain Res; 1992 Jan; 569(2):317-22. PubMed ID: 1347245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term potentiation in the avian hippocampus does not require activation of the N-methyl-D-aspartate (NMDA) receptor.
    Wieraszko A; Ball GF
    Synapse; 1993 Feb; 13(2):173-8. PubMed ID: 8095355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMDA antagonists increase recovery of evoked potentials from slices of rat olfactory cortex after anoxia.
    Yassin M; Scholfield CN
    Br J Pharmacol; 1994 Apr; 111(4):1221-7. PubMed ID: 7913373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excessive release of [3H]noradrenaline and glutamate in response to simulation of ischemic conditions in rat spinal cord slice preparation: effect of NMDA and AMPA receptor antagonists.
    Nakai T; Milusheva E; Baranyi M; Uchihashi Y; Satoh T; Vizi ES
    Eur J Pharmacol; 1999 Feb; 366(2-3):143-50. PubMed ID: 10082194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blockade of long-term potentiation by phencyclidine and sigma opiates in the hippocampus in vivo and in vitro.
    Stringer JL; Greenfield LJ; Hackett JT; Guyenet PG
    Brain Res; 1983 Nov; 280(1):127-38. PubMed ID: 6317141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quisqualate-induced changes in extracellular sodium and calcium concentrations persist in the combined presence of NMDA and non-NMDA receptor antagonists in rat hippocampal slices.
    Mudrick LA; Heinemann U
    Neurosci Lett; 1990 Aug; 116(1-2):172-8. PubMed ID: 1979665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase.
    Chetkovich DM; Sweatt JD
    J Neurochem; 1993 Nov; 61(5):1933-42. PubMed ID: 7901336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.