These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 19632322)
1. Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Cirstoiu-Hapca A; Buchegger F; Bossy L; Kosinski M; Gurny R; Delie F Eur J Pharm Sci; 2009 Oct; 38(3):230-7. PubMed ID: 19632322 [TBL] [Abstract][Full Text] [Related]
2. Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. Cirstoiu-Hapca A; Buchegger F; Lange N; Bossy L; Gurny R; Delie F J Control Release; 2010 Jun; 144(3):324-31. PubMed ID: 20219607 [TBL] [Abstract][Full Text] [Related]
3. Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Cirstoiu-Hapca A; Bossy-Nobs L; Buchegger F; Gurny R; Delie F Int J Pharm; 2007 Mar; 331(2):190-6. PubMed ID: 17196347 [TBL] [Abstract][Full Text] [Related]
5. Overcoming the formulation obstacles towards targeted chemotherapy: in vitro and in vivo evaluation of cytotoxic drug loaded immunonanoparticles. Debotton N; Parnes M; Kadouche J; Benita S J Control Release; 2008 May; 127(3):219-30. PubMed ID: 18343522 [TBL] [Abstract][Full Text] [Related]
6. Anti-KDEL-coated nanoparticles: a promising tumor targeting approach for ovarian cancer? Delie F; Ribaux P; Petignat P; Cohen M Biochimie; 2012 Nov; 94(11):2391-7. PubMed ID: 22713763 [TBL] [Abstract][Full Text] [Related]
7. Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells. Mattu C; Pabari RM; Boffito M; Sartori S; Ciardelli G; Ramtoola Z Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):463-72. PubMed ID: 23916461 [TBL] [Abstract][Full Text] [Related]
8. A quantitative evaluation of the molecular binding affinity between a monoclonal antibody conjugated to a nanoparticle and an antigen by surface plasmon resonance. Debotton N; Zer H; Parnes M; Harush-Frenkel O; Kadouche J; Benita S Eur J Pharm Biopharm; 2010 Feb; 74(2):148-56. PubMed ID: 19835957 [TBL] [Abstract][Full Text] [Related]
9. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Lee AL; Wang Y; Cheng HY; Pervaiz S; Yang YY Biomaterials; 2009 Feb; 30(5):919-27. PubMed ID: 19042015 [TBL] [Abstract][Full Text] [Related]
10. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Karra N; Nassar T; Ripin AN; Schwob O; Borlak J; Benita S Small; 2013 Dec; 9(24):4221-36. PubMed ID: 23873835 [TBL] [Abstract][Full Text] [Related]
11. Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. Chen H; Gao J; Lu Y; Kou G; Zhang H; Fan L; Sun Z; Guo Y; Zhong Y J Control Release; 2008 Jun; 128(3):209-16. PubMed ID: 18450313 [TBL] [Abstract][Full Text] [Related]
12. Targeting HER2+ breast cancer cells: lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles. Owen SC; Patel N; Logie J; Pan G; Persson H; Moffat J; Sidhu SS; Shoichet MS J Control Release; 2013 Dec; 172(2):395-404. PubMed ID: 23880472 [TBL] [Abstract][Full Text] [Related]
13. Strengthening Gastric Cancer Therapy by Trastuzumab-Conjugated Nanoparticles with Simultaneous Encapsulation of Anti-MiR-21 and 5-Fluorouridine. Hu N; Yin JF; Ji Z; Hong Y; Wu P; Bian B; Song Z; Li R; Liu Q; Wu F Cell Physiol Biochem; 2017; 44(6):2158-2173. PubMed ID: 29241186 [TBL] [Abstract][Full Text] [Related]
14. Safety and proof-of-concept efficacy of inhaled drug loaded nano- and immunonanoparticles in a c-Raf transgenic lung cancer model. Karra N; Nassar T; Laenger F; Benita S; Borlak J Curr Cancer Drug Targets; 2013 Jan; 13(1):11-29. PubMed ID: 23030233 [TBL] [Abstract][Full Text] [Related]
15. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Yu K; Zhao J; Zhang Z; Gao Y; Zhou Y; Teng L; Li Y Int J Pharm; 2016 Jan; 497(1-2):78-87. PubMed ID: 26617314 [TBL] [Abstract][Full Text] [Related]
16. An effective treatment approach of DPP-IV inhibitor encapsulated polymeric nanoparticles conjugated with anti-CD-4 mAb for type 1 diabetes. Thondawada M; Wadhwani AD; S Palanisamy D; Rathore HS; Gupta RC; Chintamaneni PK; Samanta MK; Dubala A; Varma S; Krishnamurthy PT; Gowthamarajan K Drug Dev Ind Pharm; 2018 Jul; 44(7):1120-1129. PubMed ID: 29430979 [TBL] [Abstract][Full Text] [Related]
17. Targeted siRNA delivery by anti-HER2 antibody-modified nanoparticles of mPEG-chitosan diblock copolymer. Wang Y; Liu P; Du J; Sun Y; Li F; Duan Y J Biomater Sci Polym Ed; 2013; 24(10):1219-32. PubMed ID: 23713424 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Sun B; Ranganathan B; Feng SS Biomaterials; 2008 Feb; 29(4):475-86. PubMed ID: 17953985 [TBL] [Abstract][Full Text] [Related]
19. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells. Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655 [TBL] [Abstract][Full Text] [Related]
20. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]