These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 19632322)
21. Docetaxel immunonanocarriers as targeted delivery systems for HER 2-positive tumor cells: preparation, characterization, and cytotoxicity studies. Koopaei MN; Dinarvand R; Amini M; Rabbani H; Emami S; Ostad SN; Atyabi F Int J Nanomedicine; 2011; 6():1903-12. PubMed ID: 21931485 [TBL] [Abstract][Full Text] [Related]
22. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Misra R; Sahoo SK Eur J Pharm Sci; 2010 Jan; 39(1-3):152-63. PubMed ID: 19961929 [TBL] [Abstract][Full Text] [Related]
23. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Liu Y; Li K; Liu B; Feng SS Biomaterials; 2010 Dec; 31(35):9145-55. PubMed ID: 20864169 [TBL] [Abstract][Full Text] [Related]
24. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Gao J; Kou G; Wang H; Chen H; Li B; Lu Y; Zhang D; Wang S; Hou S; Qian W; Dai J; Zhao J; Zhong Y; Guo Y Breast Cancer Res Treat; 2009 May; 115(1):29-41. PubMed ID: 18481173 [TBL] [Abstract][Full Text] [Related]
25. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer. Min SY; Byeon HJ; Lee C; Seo J; Lee ES; Shin BS; Choi HG; Lee KC; Youn YS Int J Pharm; 2015 Oct; 494(1):506-15. PubMed ID: 26315118 [TBL] [Abstract][Full Text] [Related]
26. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Sahoo SK; Ma W; Labhasetwar V Int J Cancer; 2004 Nov; 112(2):335-40. PubMed ID: 15352049 [TBL] [Abstract][Full Text] [Related]
27. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eloy JO; Petrilli R; Chesca DL; Saggioro FP; Lee RJ; Marchetti JM Eur J Pharm Biopharm; 2017 Jun; 115():159-167. PubMed ID: 28257810 [TBL] [Abstract][Full Text] [Related]
28. Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. Vivek R; Thangam R; NipunBabu V; Rejeeth C; Sivasubramanian S; Gunasekaran P; Muthuchelian K; Kannan S ACS Appl Mater Interfaces; 2014 May; 6(9):6469-80. PubMed ID: 24780315 [TBL] [Abstract][Full Text] [Related]
29. Dual-Targeted Delivery of Nanoparticles Encapsulating Paclitaxel and Everolimus: a Novel Strategy to Overcome Breast Cancer Receptor Heterogeneity. Houdaihed L; Evans JC; Allen C Pharm Res; 2020 Jan; 37(3):39. PubMed ID: 31965330 [TBL] [Abstract][Full Text] [Related]
30. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Zhao P; Wang H; Yu M; Liao Z; Wang X; Zhang F; Ji W; Wu B; Han J; Zhang H; Wang H; Chang J; Niu R Eur J Pharm Biopharm; 2012 Jun; 81(2):248-56. PubMed ID: 22446630 [TBL] [Abstract][Full Text] [Related]
31. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles. Kouchakzadeh H; Shojaosadati SA; Tahmasebi F; Shokri F Int J Pharm; 2013 Apr; 447(1-2):62-9. PubMed ID: 23454849 [TBL] [Abstract][Full Text] [Related]
32. Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles. Erdoğar N; Esendağlı G; Nielsen TT; Şen M; Öner L; Bilensoy E Int J Pharm; 2016 Jul; 509(1-2):375-390. PubMed ID: 27282534 [TBL] [Abstract][Full Text] [Related]
33. Anti-HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer. Goldstein D; Gofrit O; Nyska A; Benita S Cancer Res; 2007 Jan; 67(1):269-75. PubMed ID: 17210707 [TBL] [Abstract][Full Text] [Related]
34. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Giovino C; Ayensu I; Tetteh J; Boateng JS Int J Pharm; 2012 May; 428(1-2):143-51. PubMed ID: 22405987 [TBL] [Abstract][Full Text] [Related]
35. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Liang HF; Chen CT; Chen SC; Kulkarni AR; Chiu YL; Chen MC; Sung HW Biomaterials; 2006 Mar; 27(9):2051-9. PubMed ID: 16307794 [TBL] [Abstract][Full Text] [Related]
36. Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Abedin MR; Powers K; Aiardo R; Barua D; Barua S Sci Rep; 2021 Apr; 11(1):7347. PubMed ID: 33795712 [TBL] [Abstract][Full Text] [Related]
37. Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Mu Q; Kievit FM; Kant RJ; Lin G; Jeon M; Zhang M Nanoscale; 2015 Nov; 7(43):18010-4. PubMed ID: 26469772 [TBL] [Abstract][Full Text] [Related]
38. Transferrin conjugated poly (γ-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticles for targeting drug delivery. Zhao C; Liu X; Liu J; Yang Z; Rong X; Li M; Liang X; Wu Y Colloids Surf B Biointerfaces; 2014 Nov; 123():787-96. PubMed ID: 25454663 [TBL] [Abstract][Full Text] [Related]
39. One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles. Kao CH; Wang JY; Chuang KH; Chuang CH; Cheng TC; Hsieh YC; Tseng YL; Chen BM; Roffler SR; Cheng TL Biomaterials; 2014 Dec; 35(37):9930-9940. PubMed ID: 25212525 [TBL] [Abstract][Full Text] [Related]
40. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]