These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19632778)

  • 1. Remediation of coastal marine sediments using granulated coal ash.
    Asaoka S; Yamamoto T; Yoshioka I; Tanaka H
    J Hazard Mater; 2009 Dec; 172(1):92-8. PubMed ID: 19632778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments.
    Asaoka S; Yamamoto T; Kondo S; Hayakawa S
    Bioresour Technol; 2009 Sep; 100(18):4127-32. PubMed ID: 19394819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment.
    Asaoka S; Yamamoto T
    Mar Pollut Bull; 2010 Apr; 60(4):573-8. PubMed ID: 20003992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of phosphate adsorption onto granulated coal ash in seawater.
    Asaoka S; Yamamoto T
    Mar Pollut Bull; 2010 Aug; 60(8):1188-92. PubMed ID: 20403625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass.
    Yamamoto H; Yamamoto T; Mito Y; Asaoka S
    Mar Pollut Bull; 2016 Jun; 107(1):188-205. PubMed ID: 27143344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field experiments on remediation of coastal sediments using granulated coal ash.
    Kim K; Hibino T; Yamamoto T; Hayakawa S; Mito Y; Nakamoto K; Lee IC
    Mar Pollut Bull; 2014 Jun; 83(1):132-7. PubMed ID: 24759507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of hydrogen sulfide removal efficiency with granulated coal ash applied to eutrophic marine sediment using a simplified simulation model.
    Asaoka S; Yamamoto T; Yamamoto H; Okamura H; Hino K; Nakamoto K; Saito T
    Mar Pollut Bull; 2015 May; 94(1-2):55-61. PubMed ID: 25818857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash.
    Asaoka S; Hayakawa S; Kim KH; Takeda K; Katayama M; Yamamoto T
    J Colloid Interface Sci; 2012 Jul; 377(1):284-90. PubMed ID: 22487226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot study on remediation of sediments enriched by oyster farming wastes using granulated coal ash.
    Yamamoto T; Kim KH; Shirono K
    Mar Pollut Bull; 2015 Jan; 90(1-2):54-9. PubMed ID: 25480153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sediment deposition on phosphate and hydrogen sulfide removal by granulated coal ash in coastal sediments.
    Jeong I; Nakashita S; Hibino T; Kim K
    Mar Pollut Bull; 2022 Jun; 179():113679. PubMed ID: 35489092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.
    Yamamoto T; Kondo S; Kim KH; Asaoka S; Yamamoto H; Tokuoka M; Hibino T
    Mar Pollut Bull; 2012 Nov; 64(11):2428-34. PubMed ID: 23017947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.
    Asaoka S; Okamura H; Kim K; Hatanaka Y; Nakamoto K; Hino K; Oikawa T; Hayakawa S; Okuda T
    Chemosphere; 2017 Feb; 168():384-389. PubMed ID: 27810538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research and application of in-situ control technology for sediment rehabilitation in eutrophic water bodies.
    Liu B; Liu X; Yang J; Garman DE; Zhang K; Zhang H
    Water Sci Technol; 2012; 65(7):1190-9. PubMed ID: 22437015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment.
    Dittrich M; Gabriel O; Rutzen C; Koschel R
    Sci Total Environ; 2011 Mar; 409(8):1504-15. PubMed ID: 21292312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal and spatial characteristics of seawater and sediment at Youngil Bay, southeast coast of Korea.
    Lee M; Bae W; Chung J; Jung HS; Shim H
    Mar Pollut Bull; 2008; 57(6-12):325-34. PubMed ID: 18514230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hydrogen sulfide on phosphorus lability in lake sediments amended with drinking water treatment residuals.
    Wang C; Liu J; Pei Y
    Chemosphere; 2013 May; 91(9):1344-8. PubMed ID: 23453604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impact of aquaculture-sedimentation and nutrient loadings from shrimp culture of the southeast coastal region of the Bay of Bengal.
    Das B; Khan YS; Das P
    J Environ Sci (China); 2004; 16(3):466-70. PubMed ID: 15272725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus mass balance in a highly eutrophic semi-enclosed inlet near a big metropolis: a small inlet can contribute towards particulate organic matter production.
    Asaoka S; Yamamoto T
    Mar Pollut Bull; 2011; 63(5-12):237-42. PubMed ID: 21402392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal changes of marine macrobenthic community in sub-tropical waters upon recovery from eutrophication. I. Sediment quality and community structure.
    Shin PK; Lam NW; Wu RS; Qian PY; Cheung SG
    Mar Pollut Bull; 2008 Feb; 56(2):282-96. PubMed ID: 18061627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of shallow organically enriched marine sediments using benthic microalgae.
    Yamamoto T; Goto I; Kawaguchi O; Minagawa K; Ariyoshi E; Matsuda O
    Mar Pollut Bull; 2008; 57(1-5):108-15. PubMed ID: 18048063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.