These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 19632817)
1. Determination of critical micellar concentrations of two monoketo derivatives of cholic acid. Posa M; Guzsvány V; Csanádi J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):84-90. PubMed ID: 19632817 [TBL] [Abstract][Full Text] [Related]
2. The influence of NaCl on hydrophobicity of selected, pharmacologically active bile acids expressed with chromatographic retention index and critical micellar concentration. Posa M; Pilipović A; Lalić M Colloids Surf B Biointerfaces; 2010 Nov; 81(1):336-43. PubMed ID: 20702073 [TBL] [Abstract][Full Text] [Related]
3. Mixed micelles of 7,12-dioxolithocholic acid and selected hydrophobic bile acids: interaction parameter, partition coefficient of nitrazepam and mixed micelles haemolytic potential. Poša M; Tepavčević V Colloids Surf B Biointerfaces; 2011 Sep; 86(2):285-91. PubMed ID: 21546225 [TBL] [Abstract][Full Text] [Related]
4. Chemometric and conformational approach to the analysis of the aggregation capabilities in a set of bile salts of the allo and normal series. Poša M; Sebenji A J Pharm Biomed Anal; 2016 Mar; 121():316-324. PubMed ID: 26746785 [TBL] [Abstract][Full Text] [Related]
5. Molecular interactions between selected sodium salts of bile acids and morphine hydrochloride. Poša M; Csanádi J; Kövér KE; Guzsvány V; Batta G Colloids Surf B Biointerfaces; 2012 Jun; 94():317-23. PubMed ID: 22387018 [TBL] [Abstract][Full Text] [Related]
6. Self-Association of the Anion of 7-Oxodeoxycholic Acid (Bile Salt): How Secondary Micelles Are Formed. Poša M Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511620 [TBL] [Abstract][Full Text] [Related]
7. Determination of critical micellar concentrations of cholic acid and its keto derivatives. Posa M; Kevresan S; Mikov M; Cirin-Novta V; Sârbu C; Kuhajda K Colloids Surf B Biointerfaces; 2007 Oct; 59(2):179-83. PubMed ID: 17604970 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical and biological characterization of monoketocholic acid, a novel permeability enhancer. Yang L; Zhang H; Mikov M; Tucker IG Mol Pharm; 2009; 6(2):448-56. PubMed ID: 19718798 [TBL] [Abstract][Full Text] [Related]
9. Study of partition of nitrazepam in bile salt micelles and the role of lecithin. de Castro B; Gameiro P; Guimarães C; Lima JL; Reis S J Pharm Biomed Anal; 2001 Feb; 24(4):595-602. PubMed ID: 11272316 [TBL] [Abstract][Full Text] [Related]
10. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton. Poša M; Pilipović A; Bećarević M; Farkaš Z Steroids; 2017 Jan; 117():62-70. PubMed ID: 27651024 [TBL] [Abstract][Full Text] [Related]
11. Structure-Property Relationships in Sodium Muricholate Derivative (Bile Salts) Micellization: The Effect of Conformation of Steroid Skeleton on Hydrophobicity and Micelle Formation-Pattern Recognition and Potential Membranoprotective Properties. Poša M; Popović K Mol Pharm; 2017 Oct; 14(10):3343-3355. PubMed ID: 28863265 [TBL] [Abstract][Full Text] [Related]
12. Critical micellar concentrations of keto derivatives of selected bile acids: thermodynamic functions of micelle formation. Posa M; Kevresan S; Mikov M; Cirin-Novta V; Kuhajda K Colloids Surf B Biointerfaces; 2008 Jul; 64(2):151-61. PubMed ID: 18328679 [TBL] [Abstract][Full Text] [Related]
13. Docking-based preliminary study on the interactions of bile acids with drugs at the transporter level in intestinal bacteria. Djanic M; Pavlovic N; Stanimirov B; Stojancevic T; Golocorbin-Kon S; Bojic G; Mikov M Eur Rev Med Pharmacol Sci; 2016; 20(3):553-60. PubMed ID: 26914133 [TBL] [Abstract][Full Text] [Related]
14. Determination of number-average aggregation numbers of bile salts micelles with a special emphasis on their oxo derivatives-the effect of the steroid skeleton. Poša M; Sebenji A Biochim Biophys Acta; 2014 Mar; 1840(3):1072-82. PubMed ID: 24246958 [TBL] [Abstract][Full Text] [Related]
16. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. Roda A; Minutello A; Angellotti MA; Fini A J Lipid Res; 1990 Aug; 31(8):1433-43. PubMed ID: 2280184 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence properties of trans-ethyl-p-(dimethylamino) cinnamate in presence of bile acid host. Singh TS; Mitra S J Photochem Photobiol B; 2009 Sep; 96(3):193-200. PubMed ID: 19646893 [TBL] [Abstract][Full Text] [Related]
18. Experimental evaluation of a model for predicting micellar composition and concentration of monomeric species in bile salt binary mixtures. Roda A; Cerré C; Fini A; Sipahi AM; Baraldini M J Pharm Sci; 1995 May; 84(5):593-8. PubMed ID: 7658350 [TBL] [Abstract][Full Text] [Related]
19. Micellization parameters (number average, aggregation number and critical micellar concentration) of bile salt 3 and 7 ethylidene derivatives: Role of the steroidal skeleton II. Poša M; Bjedov S; Škorić D; Sakač M Biochim Biophys Acta; 2015 Jul; 1850(7):1345-53. PubMed ID: 25840355 [TBL] [Abstract][Full Text] [Related]
20. The ionization behavior of bile acids in different aqueous environments. Cabral DJ; Hamilton JA; Small DM J Lipid Res; 1986 Mar; 27(3):334-43. PubMed ID: 3734630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]