BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19633125)

  • 1. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production.
    Fowler ZL; Gikandi WW; Koffas MA
    Appl Environ Microbiol; 2009 Sep; 75(18):5831-9. PubMed ID: 19633125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli.
    Leonard E; Lim KH; Saw PN; Koffas MA
    Appl Environ Microbiol; 2007 Jun; 73(12):3877-86. PubMed ID: 17468269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster.
    Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA.
    Xu P; Ranganathan S; Fowler ZL; Maranas CD; Koffas MA
    Metab Eng; 2011 Sep; 13(5):578-87. PubMed ID: 21763447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli.
    Zhu S; Wu J; Du G; Zhou J; Chen J
    Appl Environ Microbiol; 2014 May; 80(10):3072-80. PubMed ID: 24610848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli.
    Wu J; Du G; Chen J; Zhou J
    Sci Rep; 2015 Sep; 5():13477. PubMed ID: 26323217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering.
    Zha W; Rubin-Pitel SB; Shao Z; Zhao H
    Metab Eng; 2009 May; 11(3):192-8. PubMed ID: 19558964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli.
    Tokuyama K; Toya Y; Matsuda F; Cress BF; Koffas MAG; Shimizu H
    Metab Eng; 2019 Mar; 52():215-223. PubMed ID: 30529031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis.
    Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli.
    Zhou S; Yuan SF; Nair PH; Alper HS; Deng Y; Zhou J
    Metab Eng; 2021 Sep; 67():41-52. PubMed ID: 34052445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a Novel Metabolic Pathway for Improving Cellular Malonyl-CoA Levels in Escherichia coli.
    Moteallehi-Ardakani MH; Asad S; Marashi SA; Moghaddasi A; Zarparvar P
    Mol Biotechnol; 2023 Sep; 65(9):1508-1517. PubMed ID: 36658293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum.
    Wu X; Liu J; Liu D; Yuwen M; Koffas MAG; Zha J
    Microb Cell Fact; 2022 May; 21(1):86. PubMed ID: 35568867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli.
    Watts KT; Lee PC; Schmidt-Dannert C
    Chembiochem; 2004 Apr; 5(4):500-7. PubMed ID: 15185374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.
    Wu J; Yu O; Du G; Zhou J; Chen J
    Appl Environ Microbiol; 2014 Dec; 80(23):7283-92. PubMed ID: 25239896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of pinocembrin from glucose using engineered escherichia coli.
    Kim BG; Lee H; Ahn JH
    J Microbiol Biotechnol; 2014 Nov; 24(11):1536-41. PubMed ID: 25085569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy.
    Wu J; Zhang X; Zhou J; Dong M
    Bioresour Technol; 2016 Oct; 218():999-1007. PubMed ID: 27450982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains.
    Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S
    J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria.
    Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete Biosynthesis of Anthocyanins Using
    Jones JA; Vernacchio VR; Collins SM; Shirke AN; Xiu Y; Englaender JA; Cress BF; McCutcheon CC; Linhardt RJ; Gross RA; Koffas MAG
    mBio; 2017 Jun; 8(3):. PubMed ID: 28588129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.
    Liu D; Xiao Y; Evans BS; Zhang F
    ACS Synth Biol; 2015 Feb; 4(2):132-40. PubMed ID: 24377365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.