These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 1963331)

  • 1. [Modification of ion-transporting systems of human erythrocytes in storage].
    Kobal' AM; Orlov SN; Pokudin NI; Kukharenko VIu; Postnov IuV
    Biull Eksp Biol Med; 1990 Aug; 110(8):151-3. PubMed ID: 1963331
    [No Abstract]   [Full Text] [Related]  

  • 2. Erythrocyte sodium-potassium-ATPase and sodium transport in obesity.
    Mir MA; Charalambous BM; Morgan K; Evans PJ
    N Engl J Med; 1981 Nov; 305(21):1264-8. PubMed ID: 6270558
    [No Abstract]   [Full Text] [Related]  

  • 3. Decreased activity of ouabain-dependent sodium and potassium fluxes in erythrocytes during depression and mania.
    Rybakowski J; Potok E; Strzyzewski W
    Act Nerv Super (Praha); 1983 Mar; 25(1):72-4. PubMed ID: 6305086
    [No Abstract]   [Full Text] [Related]  

  • 4. Hypertension, obesity, and sodium-potassium transport.
    Van Winkle LJ
    N Engl J Med; 1981 Feb; 304(6):358-9. PubMed ID: 6255333
    [No Abstract]   [Full Text] [Related]  

  • 5. [Sodium, potassium adenosine triphosphatase activity and sodium and potassium concentrations in the erythrocytes in normal pregnancy and in EPH-gestosis].
    Zajac I
    Wiad Lek; 1984 Apr; 37(8):601-6. PubMed ID: 6093391
    [No Abstract]   [Full Text] [Related]  

  • 6. [Ion content, ion transport and membrane ATPase of erythrocytes in stored blood].
    Grobecker H; Piechowski U
    Z Klin Chem Klin Biochem; 1966 May; 4(3):126-30. PubMed ID: 4231194
    [No Abstract]   [Full Text] [Related]  

  • 7. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man.
    Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Activity of the systems of transmembrane transport of Na+ (Na+-K+ ATPase, Na+-K+-Cl cotransport, Na+-Li+ countertransport and passive Na+ diffusion) in essential arterial hypertension].
    de la Sierra A; Coca A; Aguilera MT; Vives JL; Ingelmo M; Urbano-Márquez A
    Med Clin (Barc); 1988 Feb; 90(5):186-9. PubMed ID: 2832663
    [No Abstract]   [Full Text] [Related]  

  • 9. [Intracellular concentrations and transmembrane flow of sodium and potassium in red blood cells of hypertensive patients and their offspring].
    Lijnen P
    Verh K Acad Geneeskd Belg; 1986; 48(4):225-60. PubMed ID: 2431551
    [No Abstract]   [Full Text] [Related]  

  • 10. Explaining on request a correlation between membrane Na,K-ATPase and K+ content in erythrocytes and other findings in the preceding paper.
    Ling GN
    Physiol Chem Phys Med NMR; 1998; 30(1):89-97. PubMed ID: 9807237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More on sodium-potassium-ATPase and obesity.
    N Engl J Med; 1984 May; 310(21):1390-1. PubMed ID: 6325908
    [No Abstract]   [Full Text] [Related]  

  • 12. [Relation between energy metabolism, Na+ and K+ levels, and Na,K-ATPase activity in erythrocytes and their volume and shape during overheating].
    Bondarev DP; Kozlov NB
    Vopr Med Khim; 1988; 34(5):87-91. PubMed ID: 2851213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage modulation of Na+/K+ transport in human erythrocytes.
    Teissie J; Yow Tsong T
    J Physiol (Paris); 1981 May; 77(9):1043-53. PubMed ID: 6286955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Alcohol-related high blood pressure, and erythrocyte Na+/K(+)-ATPase activity, sodium and potassium concentrations].
    Tsuritani I; Teraoka K; Miyagoshi M; Honda R; Ishizaki M; Yamada Y
    Rinsho Byori; 1993 Dec; 41(12):1353-7. PubMed ID: 8295347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical profile of essential hypertensives based on ion transport abnormalities.
    de la Sierra A; Coca A; Paré JC; Sánchez M; Compte M; Azqueta M; Urbano-Márquez A
    J Hypertens Suppl; 1993 Dec; 11(5):S250-1. PubMed ID: 8158369
    [No Abstract]   [Full Text] [Related]  

  • 16. Activation of K+ channel and inhibition of Na(+)-K+ ATPase of human erythrocytes by cyclosporine: possible role in hyperpotassemia in kidney transplant recipients.
    Ihara H; Hosokawa S; Ogino T; Arima M; Ikoma F
    Transplant Proc; 1990 Aug; 22(4):1736-9. PubMed ID: 2167529
    [No Abstract]   [Full Text] [Related]  

  • 17. On the role of Na,K-ATPase: a challenge for the membrane-pump and association-induction hypotheses.
    Bogner P; Nagy E; Miseta A
    Physiol Chem Phys Med NMR; 1998; 30(1):81-7. PubMed ID: 9807236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte ion transport in protein-energy malnutrition.
    Fondu P; Mandelbaum IM; Vis HL
    Am J Clin Nutr; 1979 Apr; 32(4):721-3. PubMed ID: 219676
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.
    Morgan K; Brown RC; Spurlock G; Southgate K; Mir MA
    J Clin Invest; 1986 Feb; 77(2):538-44. PubMed ID: 2418064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two different types of ATP-dependent anion coupled Na transport are mediated by the human red blood cell and Na/K pump.
    Marin R; Hoffman JF
    Prog Clin Biol Res; 1988; 268A():539-44. PubMed ID: 2843899
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.