These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 19633622)

  • 21. Overview of microalgal extracellular polymeric substances (EPS) and their applications.
    Xiao R; Zheng Y
    Biotechnol Adv; 2016 Nov; 34(7):1225-1244. PubMed ID: 27576096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.
    Jin J; Guan Y
    Bioresour Technol; 2014 Oct; 169():387-394. PubMed ID: 25069092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14.
    Brian-Jaisson F; Molmeret M; Fahs A; Guentas-Dombrowsky L; Culioli G; Blache Y; Cérantola S; Ortalo-Magné A
    Biofouling; 2016; 32(5):547-60. PubMed ID: 27020951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation.
    Mahto KU; Kumari S; Das S
    Crit Rev Biochem Mol Biol; 2022 Jun; 57(3):305-332. PubMed ID: 34937434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium
    Maeda K; Okuda Y; Enomoto G; Watanabe S; Ikeuchi M
    Elife; 2021 Jun; 10():. PubMed ID: 34127188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Significance of microbial biofilms in food industry: a review.
    Kumar CG; Anand SK
    Int J Food Microbiol; 1998 Jun; 42(1-2):9-27. PubMed ID: 9706794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria.
    Hayat S; Sabri AN; McHugh TD
    J Gen Appl Microbiol; 2018 Jan; 63(6):325-338. PubMed ID: 29142162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    Anal Bioanal Chem; 2009 Jan; 393(1):197-206. PubMed ID: 18979092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence of inoculation influences the nature of extracellular polymeric substances and biofilm formation in Azotobacter chroococcum and Trichoderma viride.
    Velmourougane K; Prasanna R; Singh SB; Kumar R; Saha S
    FEMS Microbiol Ecol; 2017 Jul; 93(7):. PubMed ID: 28498986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function.
    Limoli DH; Jones CJ; Wozniak DJ
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of biopolymers produced by planktonic and biofilm cells of Herbaspirillum lusitanum P6-12.
    Velichko NS; Grinev VS; Fedonenko YP
    J Appl Microbiol; 2020 Nov; 129(5):1349-1363. PubMed ID: 32216024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm.
    Peng N; Cai P; Mortimer M; Wu Y; Gao C; Huang Q
    BMC Microbiol; 2020 May; 20(1):115. PubMed ID: 32410574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the mucR gene regulating biosynthesis of exopolysaccharides: implications for biofilm formation in Sinorhizobium meliloti Rm1021.
    Rinaudi LV; Sorroche F; Zorreguieta A; Giordano W
    FEMS Microbiol Lett; 2010 Jan; 302(1):15-21. PubMed ID: 19929968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of an extracellular polymeric substance (EPS) precoating on the initial adhesion of Burkholderia cepacia and Pseudomonas aeruginosa.
    Hwang G; Kang S; El-Din MG; Liu Y
    Biofouling; 2012; 28(6):525-38. PubMed ID: 22686692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance.
    Naseem H; Ahsan M; Shahid MA; Khan N
    J Basic Microbiol; 2018 Dec; 58(12):1009-1022. PubMed ID: 30183106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Flagellin-Homologous Proteins in Biofilm Formation by Pathogenic
    Jung YC; Lee MA; Lee KH
    mBio; 2019 Aug; 10(4):. PubMed ID: 31409687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The polymer physics and chemistry of microbial cell attachment and adhesion.
    Geoghegan M; Andrews JS; Biggs CA; Eboigbodin KE; Elliott DR; Rolfe S; Scholes J; Ojeda JJ; Romero-González ME; Edyvean RG; Swanson L; Rutkaite R; Fernando R; Pen Y; Zhang Z; Banwart SA
    Faraday Discuss; 2008; 139():85-103; discussion 105-28, 419-20. PubMed ID: 19048992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental parameters, and not phylogeny, determine the composition of extracellular polymeric substances in microbial mats from extreme environments.
    Blanco Y; Rivas LA; González-Toril E; Ruiz-Bermejo M; Moreno-Paz M; Parro V; Palacín A; Aguilera Á; Puente-Sánchez F
    Sci Total Environ; 2019 Feb; 650(Pt 1):384-393. PubMed ID: 30199683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm.
    Liu BH; Yu LC
    Colloids Surf B Biointerfaces; 2017 Feb; 150():98-105. PubMed ID: 27907861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relevance of microbial extracellular polymeric substances (EPSs)--Part I: Structural and ecological aspects.
    Flemming HC; Wingender J
    Water Sci Technol; 2001; 43(6):1-8. PubMed ID: 11381954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.