BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19633727)

  • 1. Strong, Tailored, Biocompatible Shape-Memory Polymer Networks.
    Yakacki CM; Shandas R; Safranski D; Ortega AM; Sassaman K; Gall K
    Adv Funct Mater; 2008 Aug; 18(16):2428-2435. PubMed ID: 19633727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored (meth)acrylate shape-memory polymer networks for ophthalmic applications.
    Song L; Hu W; Wang G; Niu G; Zhang H; Cao H; Wang K; Yang H; Zhu S
    Macromol Biosci; 2010 Oct; 10(10):1194-202. PubMed ID: 20625994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored poly(ethylene) glycol dimethacrylate based shape memory polymer for orthopedic applications.
    Antony GJM; Jarali CS; Aruna ST; Raja S
    J Mech Behav Biomed Mater; 2017 Jan; 65():857-865. PubMed ID: 27810732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the addition of diurethane dimethacrylate on the chemical and mechanical properties of tBA-PEGDMA acrylate based shape memory polymer network.
    Jerald Maria Antony G; Raja S; Aruna ST; Jarali CS
    J Mech Behav Biomed Mater; 2020 Oct; 110():103951. PubMed ID: 32957243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermomechanics of the shape memory effect in polymers for biomedical applications.
    Gall K; Yakacki CM; Liu Y; Shandas R; Willett N; Anseth KS
    J Biomed Mater Res A; 2005 Jun; 73(3):339-48. PubMed ID: 15806564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications.
    Yakacki CM; Shandas R; Lanning C; Rech B; Eckstein A; Gall K
    Biomaterials; 2007 May; 28(14):2255-63. PubMed ID: 17296222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
    Sharifi S; van Kooten TG; Kranenburg HJ; Meij BP; Behl M; Lendlein A; Grijpma DW
    Biomaterials; 2013 Nov; 34(33):8105-13. PubMed ID: 23932501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dependence of MG63 osteoblast responses to (meth)acrylate-based networks on chemical structure and stiffness.
    Smith KE; Hyzy SL; Sunwoo M; Gall KA; Schwartz Z; Boyan BD
    Biomaterials; 2010 Aug; 31(24):6131-41. PubMed ID: 20510445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopolymerized Thiol-Ene Systems as Shape Memory Polymers.
    Nair DP; Cramer NB; Scott TF; Bowman CN; Shandas R
    Polymer (Guildf); 2010 Sep; 51(19):4383-4389. PubMed ID: 21072253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization.
    Yakacki CM; Lyons MB; Rech B; Gall K; Shandas R
    Biomed Mater; 2008 Mar; 3(1):015010. PubMed ID: 18458497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates.
    Choi NY; Lendlein A
    Soft Matter; 2007 Jun; 3(7):901-909. PubMed ID: 32900085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally-Induced Shape-Memory Behavior of Degradable Gelatin-Based Networks.
    Neffe AT; Löwenberg C; Julich-Gruner KK; Behl M; Lendlein A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate.
    Kelch S; Steuer S; Schmidt AM; Lendlein A
    Biomacromolecules; 2007 Mar; 8(3):1018-27. PubMed ID: 17305394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles.
    Staszczak M; Nabavian Kalat M; Golasiński KM; Urbański L; Takeda K; Matsui R; Pieczyska EA
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance shape memory polymer networks based on rigid nanoparticle cores.
    Xu J; Song J
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7652-7. PubMed ID: 20375285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged recovery of 3D printed, photo-cured polylactide shape memory polymer networks.
    Di Bartolo A; Melchels FPW
    APL Bioeng; 2020 Sep; 4(3):036105. PubMed ID: 32844139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications.
    Ramezani M; Getya D; Gitsov I; Monroe MBB
    J Mater Chem B; 2024 Jan; 12(5):1217-1231. PubMed ID: 38168979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally switchable adhesion of photopolymerizable acrylate polymer networks - biomed 2013.
    Lakhera N; Graucob A; Schneider A; Kroner E; Yakacki CM; Frick CP
    Biomed Sci Instrum; 2013; 49():141-8. PubMed ID: 23686193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
    Li X; Pan Y; Zheng Z; Ding X
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700613. PubMed ID: 29292554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.