These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19633727)

  • 41. Influence of Long-Term Storage on Shape Memory Performance and Mechanical Behavior of Pre-stretched Commercial Poly(methyl methacrylate) (PMMA).
    Wang C; Dai Y; Kou B; Huang WM
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31805701
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.
    Iijima M; Kohda N; Kawaguchi K; Muguruma T; Ohta M; Naganishi A; Murakami T; Mizoguchi I
    Eur J Orthod; 2015 Dec; 37(6):665-70. PubMed ID: 25788333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multireusable Thermoset with Anomalous Flame-Triggered Shape Memory Effect.
    Feng X; Fan J; Li A; Li G
    ACS Appl Mater Interfaces; 2019 May; 11(17):16075-16086. PubMed ID: 30986343
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High lignin, light-driven shape memory polymers with excellent mechanical performance.
    Jin X; Liu X; Li X; Du L; Su L; Ma Y; Ren S
    Int J Biol Macromol; 2022 Oct; 219():44-52. PubMed ID: 35905766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multifaceted Shape Memory Polymer Technology for Biomedical Application: Combining Self-Softening and Stretchability Properties.
    Chitrakar C; Torres MA; Rocha-Flores PE; Hu Q; Ecker M
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959906
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crosslinking of Semiaromatic Polyesters toward High-Temperature Shape Memory Polymers with Full Recovery.
    Raidt T; Schmidt M; Tiller JC; Katzenberg F
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700768. PubMed ID: 29341319
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer.
    Yu R; Yang X; Zhang Y; Zhao X; Wu X; Zhao T; Zhao Y; Huang W
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1820-1829. PubMed ID: 28009155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.
    Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q
    Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory.
    Garle A; Kong S; Ojha U; Budhlall BM
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):645-57. PubMed ID: 22252722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.
    Safranski DL; Weiss D; Clark JB; Taylor WR; Gall K
    Acta Biomater; 2014 Aug; 10(8):3475-83. PubMed ID: 24769113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of Maleic Anhydride-Grafted Poly(lactic acid) in Improving Shape Memory Properties of Thermoresponsive Poly(ethylene glycol) and Poly(lactic acid) Blends.
    Nonkrathok W; Trongsatitkul T; Suppakarn N
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, characterization, and cyclic stress-influenced degradation of a poly(ethylene glycol)-based poly(beta-amino ester).
    Keim T; Gall K
    J Biomed Mater Res A; 2010 Feb; 92(2):702-11. PubMed ID: 19274721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transparent, High-Strength, and Shape Memory Hydrogels from Thermo-Responsive Amino Acid-Derived Vinyl Polymer Networks.
    Koga T; Tomimori K; Higashi N
    Macromol Rapid Commun; 2020 Apr; 41(7):e1900650. PubMed ID: 32078206
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers.
    Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW
    Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.
    Cha KJ; Lih E; Choi J; Joung YK; Ahn DJ; Han DK
    Macromol Biosci; 2014 May; 14(5):667-78. PubMed ID: 24446274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two-year performance study of porous, thermoset, shape memory polyurethanes intended for vascular medical devices.
    Weems AC; Boyle AJ; Maitland DJ
    Smart Mater Struct; 2017 Mar; 26(3):. PubMed ID: 29962665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Smart Diffraction Gratings Based on the Shape Memory Effect.
    Sun XC; Zhang ZP; Sun ZJ; Zheng JX; Liu XQ; Xia H
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100863. PubMed ID: 35179256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shape memory polymers for active cell culture.
    Davis KA; Luo X; Mather PT; Henderson JH
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21750496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.