BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19633877)

  • 21. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol.
    Feng X; Walker TH; Bridges WC; Thornton C; Gopalakrishnan K
    Bioresour Technol; 2014 Aug; 166():17-23. PubMed ID: 24880808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.
    Choix FJ; de-Bashan LE; Bashan Y
    Enzyme Microb Technol; 2012 Oct; 51(5):300-9. PubMed ID: 22975129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol.
    Lin HJ; Xian L; Zhang QJ; Luo XM; Xu QS; Yang Q; Duan CJ; Liu JL; Tang JL; Feng JX
    J Ind Microbiol Biotechnol; 2011 Jun; 38(6):733-42. PubMed ID: 21120680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.
    Rosenberg JN; Kobayashi N; Barnes A; Noel EA; Betenbaugh MJ; Oyler GA
    PLoS One; 2014; 9(4):e92460. PubMed ID: 24699196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production.
    Shen Y; Yuan W; Pei Z; Mao E
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1674-84. PubMed ID: 19424668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation.
    Li Y; Mu J; Chen D; Han F; Xu H; Kong F; Xie F; Feng B
    Bioresour Technol; 2013 Nov; 148():283-92. PubMed ID: 24055971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors.
    Li X; Xu H; Wu Q
    Biotechnol Bioeng; 2007 Nov; 98(4):764-71. PubMed ID: 17497732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides.
    Mu J; Li S; Chen D; Xu H; Han F; Feng B; Li Y
    Bioresour Technol; 2015 Jun; 185():99-105. PubMed ID: 25768412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides.
    Wu C; Xiong W; Dai J; Wu Q
    Plant Physiol; 2015 Feb; 167(2):586-99. PubMed ID: 25511434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate.
    Wang X; Zhang MM; Sun Z; Liu SF; Qin ZH; Mou JH; Zhou ZG; Lin CSK
    J Hazard Mater; 2020 Dec; 400():123258. PubMed ID: 32947693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.
    Wang T; Ge H; Liu T; Tian X; Wang Z; Guo M; Chu J; Zhuang Y
    J Biotechnol; 2016 Jun; 228():18-27. PubMed ID: 27085889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells].
    Lang X; Liu Z; Xu M; Xie L; Li R
    Wei Sheng Wu Xue Bao; 2017 Apr; 57(4):550-9. PubMed ID: 29756738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.
    Moshi AP; Hosea KM; Elisante E; Mamo G; Önnby L; Nges IA
    J Biosci Bioeng; 2016 Apr; 121(4):457-63. PubMed ID: 26481161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of multiple extracellular enzyme activities by novel submerged culture of Aspergillus kawachii for ethanol production from raw cassava flour.
    Sugimoto T; Makita T; Watanabe K; Shoji H
    J Ind Microbiol Biotechnol; 2012 Apr; 39(4):605-12. PubMed ID: 22072435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38.
    Poomipuk N; Reungsang A; Plangklang P
    Int J Biol Macromol; 2014 Apr; 65():51-64. PubMed ID: 24412153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid.
    Htet AN; Noguchi M; Ninomiya K; Tsuge Y; Kuroda K; Kajita S; Masai E; Katayama Y; Shikinaka K; Otsuka Y; Nakamura M; Honda R; Takahashi K
    J Biosci Bioeng; 2018 Jun; 125(6):717-722. PubMed ID: 29395960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis.
    Moshi AP; Hosea KM; Elisante E; Mamo G; Mattiasson B
    Bioresour Technol; 2015 Mar; 180():128-36. PubMed ID: 25594508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel two-stage heterotrophic cultivation for starch-to-protein switch to efficiently enhance protein content of Chlorella sp. MBFJNU-17.
    Xiao X; Zhou Y; Liang Z; Lin R; Zheng M; Chen B; He Y
    Bioresour Technol; 2022 Jan; 344(Pt A):126187. PubMed ID: 34710603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source.
    Liu L; Chen J; Lim PE; Wei D
    Bioresour Technol; 2018 May; 255():140-148. PubMed ID: 29414159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity.
    Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X
    Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.