These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19633986)

  • 21. Metabolic cost of lateral stabilization during walking in people with incomplete spinal cord injury.
    Matsubara JH; Wu M; Gordon KE
    Gait Posture; 2015 Feb; 41(2):646-51. PubMed ID: 25670651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental changes in spatial margin of stability in typically developing children relate to the mechanics of gait.
    Hallemans A; Verbecque E; Dumas R; Cheze L; Van Hamme A; Robert T
    Gait Posture; 2018 Jun; 63():33-38. PubMed ID: 29705520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds.
    Blair S; Lake MJ; Ding R; Sterzing T
    Hum Mov Sci; 2018 Jun; 59():112-120. PubMed ID: 29653340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The reasons why stroke patients expend so much energy to walk slowly.
    Stoquart G; Detrembleur C; Lejeune TM
    Gait Posture; 2012 Jul; 36(3):409-13. PubMed ID: 22555062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
    Fox MD; Delp SL
    J Biomech; 2010 May; 43(8):1450-5. PubMed ID: 20236644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanics of walking in children.
    Cavagna GA; Franzetti P; Fuchimoto T
    J Physiol; 1983 Oct; 343():323-39. PubMed ID: 6644619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Walking at non-constant speeds: mechanical work, pendular transduction, and energy congruity.
    Balbinot G
    Scand J Med Sci Sports; 2017 May; 27(5):482-491. PubMed ID: 26899797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy cost of walking and gait instability in healthy 65- and 80-yr-olds.
    Malatesta D; Simar D; Dauvilliers Y; Candau R; Borrani F; Prefaut C; Caillaud C
    J Appl Physiol (1985); 2003 Dec; 95(6):2248-56. PubMed ID: 12882986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed.
    Ijmker T; Houdijk H; Lamoth CJ; Beek PJ; van der Woude LH
    J Biomech; 2013 Sep; 46(13):2109-14. PubMed ID: 23895896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of age on center of mass motion during human walking.
    Hernández A; Silder A; Heiderscheit BC; Thelen DG
    Gait Posture; 2009 Aug; 30(2):217-22. PubMed ID: 19502061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of gait speed on the body's center of mass motion relative to the center of pressure during over-ground walking.
    Lu HL; Kuo MY; Chang CF; Lu TW; Hong SW
    Hum Mov Sci; 2017 Aug; 54():354-362. PubMed ID: 28688302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Walking beyond preferred transition speed increases muscle activations with a shift from inverted pendulum to spring mass model in lower extremity.
    Shih Y; Chen YC; Lee YS; Chan MS; Shiang TY
    Gait Posture; 2016 May; 46():5-10. PubMed ID: 27131169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical work and muscular efficiency in walking children.
    Schepens B; Bastien GJ; Heglund NC; Willems PA
    J Exp Biol; 2004 Feb; 207(Pt 4):587-96. PubMed ID: 14718502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.
    Hubel TY; Usherwood JR
    J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
    Stoquart G; Detrembleur C; Lejeune T
    Neurophysiol Clin; 2008 Apr; 38(2):105-16. PubMed ID: 18423331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acceleration patterns of the head and pelvis when walking are associated with risk of falling in community-dwelling older people.
    Menz HB; Lord SR; Fitzpatrick RC
    J Gerontol A Biol Sci Med Sci; 2003 May; 58(5):M446-52. PubMed ID: 12730255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-task interference during gait on irregular terrain in people with Parkinson's disease.
    Xu H; Merryweather A; Foreman KB; Zhao J; Hunt M
    Gait Posture; 2018 Jun; 63():17-22. PubMed ID: 29702370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of the upper body accelerations in young and elderly women during level walking.
    Mazzà C; Iosa M; Pecoraro F; Cappozzo A
    J Neuroeng Rehabil; 2008 Nov; 5():30. PubMed ID: 19014631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.