BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 19634179)

  • 1. Excitotoxic motoneuron degeneration induced by glutamate receptor agonists and mitochondrial toxins in organotypic cultures of chick embryo spinal cord.
    Brunet N; Tarabal O; Esquerda JE; Calderó J
    J Comp Neurol; 2009 Oct; 516(4):277-90. PubMed ID: 19634179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis.
    Kruman II; Pedersen WA; Springer JE; Mattson MP
    Exp Neurol; 1999 Nov; 160(1):28-39. PubMed ID: 10630188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitotoxicity in the embryonic chick spinal cord.
    Stewart GR; Olney JW; Pathikonda M; Snider WD
    Ann Neurol; 1991 Dec; 30(6):758-66. PubMed ID: 1686386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord.
    Calderó J; Brunet N; Tarabal O; Piedrafita L; Hereu M; Ayala V; Esquerda JE
    Neuroscience; 2010 Feb; 165(4):1353-69. PubMed ID: 19932742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential pattern of neuroprotection in lumbar, cervical and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity.
    Gerardo-Nava J; Mayorenko II; Grehl T; Steinbusch HW; Weis J; Brook GA
    J Chem Neuroanat; 2013 Nov; 53():11-7. PubMed ID: 24126226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of excitatory amino acids on neuromuscular development in the chick embryo.
    Calderó J; Ciutat D; Lladó J; Castán E; Oppenheim RW; Esquerda JE
    J Comp Neurol; 1997 Oct; 387(1):73-95. PubMed ID: 9331173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-Nitropropionic acid toxicity in hippocampus: protection through N-methyl-D-aspartate receptor antagonism.
    Karanian DA; Baude AS; Brown QB; Parsons CG; Bahr BA
    Hippocampus; 2006; 16(10):834-42. PubMed ID: 16897723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitotoxic motoneuron disease in chick embryo evolves with autophagic neurodegeneration and deregulation of neuromuscular innervation.
    Calderó J; Tarabal O; Casanovas A; Ciutat D; Casas C; Lladó J; Esquerda JE
    J Neurosci Res; 2007 Sep; 85(12):2726-40. PubMed ID: 17243177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo.
    Corona JC; Tapia R
    J Neurochem; 2004 May; 89(4):988-97. PubMed ID: 15140197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein retention in the endoplasmic reticulum, blockade of programmed cell death and autophagy selectively occur in spinal cord motoneurons after glutamate receptor-mediated injury.
    Tarabal O; Calderó J; Casas C; Oppenheim RW; Esquerda JE
    Mol Cell Neurosci; 2005 Jun; 29(2):283-98. PubMed ID: 15911352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice.
    Avossa D; Grandolfo M; Mazzarol F; Zatta M; Ballerini L
    Neuroscience; 2006; 138(4):1179-94. PubMed ID: 16442737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mitochondrial dysfunction on glutamate receptor-mediated neurotoxicity in cultured rat spinal motor neurons.
    Kanki R; Nakamizo T; Yamashita H; Kihara T; Sawada H; Uemura K; Kawamata J; Shibasaki H; Akaike A; Shimohama S
    Brain Res; 2004 Jul; 1015(1-2):73-81. PubMed ID: 15223368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delayed neuroprotection by riluzole against excitotoxic damage evoked by kainate on rat organotypic spinal cord cultures.
    Mazzone GL; Nistri A
    Neuroscience; 2011 Sep; 190():318-27. PubMed ID: 21689734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic mitochondrial inhibition induces glutamate-mediated corticomotoneuron death in an organotypic culture model.
    Van Westerlaak MG; Joosten EA; Gribnau AA; Cools AR; Bär PR
    Exp Neurol; 2001 Feb; 167(2):393-400. PubMed ID: 11161628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase.
    Tolosa L; Mir M; Asensio VJ; Olmos G; Lladó J
    J Neurochem; 2008 May; 105(4):1080-90. PubMed ID: 18182045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing effects of excitatory amino acids on chick embryo spinal cord motoneurons: excitotoxic degeneration or prevention of programmed cell death.
    Lladó J; Calderó J; Ribera J; Tarabal O; Oppenheim RW; Esquerda JE
    J Neurosci; 1999 Dec; 19(24):10803-12. PubMed ID: 10594063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-permeable AMPA receptors and intracellular Ca2+ determine motoneuron vulnerability in rat spinal cord in vivo.
    Corona JC; Tapia R
    Neuropharmacology; 2007 Apr; 52(5):1219-28. PubMed ID: 17320918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effect of parvalbumin on excitotoxic motor neuron death.
    Van Den Bosch L; Schwaller B; Vleminckx V; Meijers B; Stork S; Ruehlicke T; Van Houtte E; Klaassen H; Celio MR; Missiaen L; Robberecht W; Berchtold MW
    Exp Neurol; 2002 Apr; 174(2):150-61. PubMed ID: 11922657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB.
    Tolosa L; Caraballo-Miralles V; Olmos G; Lladó J
    Mol Cell Neurosci; 2011 Jan; 46(1):176-86. PubMed ID: 20849956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.