BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19634184)

  • 1. Quantitative characterization of quantum dot-labeled lambda phage for Escherichia coli detection.
    Yim PB; Clarke ML; McKinstry M; De Paoli Lacerda SH; Pease LF; Dobrovolskaia MA; Kang H; Read TD; Sozhamannan S; Hwang J
    Biotechnol Bioeng; 2009 Dec; 104(6):1059-67. PubMed ID: 19634184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria.
    Dwarakanath S; Bruno JG; Shastry A; Phillips T; John AA; Kumar A; Stephenson LD
    Biochem Biophys Res Commun; 2004 Dec; 325(3):739-43. PubMed ID: 15541352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colistin-functionalised CdSe/ZnS quantum dots as fluorescent probe for the rapid detection of Escherichia coli.
    Carrillo-Carrión C; Simonet BM; Valcárcel M
    Biosens Bioelectron; 2011 Jul; 26(11):4368-74. PubMed ID: 21605965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of fluorescent viruses in growing plaques.
    Alvarez LJ; Thomen P; Makushok T; Chatenay D
    Biotechnol Bioeng; 2007 Feb; 96(3):615-21. PubMed ID: 16900526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bacteriophage lambda attachment site in wild strains of Escherichia coli.
    Kuhn J; Campbell A
    J Mol Evol; 2001 Dec; 53(6):607-14. PubMed ID: 11677620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots.
    Hahn MA; Keng PC; Krauss TD
    Anal Chem; 2008 Feb; 80(3):864-72. PubMed ID: 18186615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels.
    Yang L; Li Y
    Analyst; 2006 Mar; 131(3):394-401. PubMed ID: 16496048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage.
    Tanji Y; Furukawa C; Na SH; Hijikata T; Miyanaga K; Unno H
    J Biotechnol; 2004 Oct; 114(1-2):11-20. PubMed ID: 15464594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling.
    Wang Q; Ye F; Fang T; Niu W; Liu P; Min X; Li X
    J Colloid Interface Sci; 2011 Mar; 355(1):9-14. PubMed ID: 21190695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of single bacterial pathogens with semiconductor quantum dots.
    Hahn MA; Tabb JS; Krauss TD
    Anal Chem; 2005 Aug; 77(15):4861-9. PubMed ID: 16053299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins.
    Babu P; Sinha S; Surolia A
    Bioconjug Chem; 2007; 18(1):146-51. PubMed ID: 17226967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria.
    Xue X; Pan J; Xie H; Wang J; Zhang S
    Talanta; 2009 Mar; 77(5):1808-13. PubMed ID: 19159803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization and bioconjugation of QDs and their application in cell imaging.
    Wang HQ; Zhang HL; Li XQ; Wang JH; Huang ZL; Zhao YD
    J Biomed Mater Res A; 2008 Sep; 86(3):833-41. PubMed ID: 18041709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli.
    Wu SM; Zhao X; Zhang ZL; Xie HY; Tian ZQ; Peng J; Lu ZX; Pang DW; Xie ZX
    Chemphyschem; 2006 May; 7(5):1062-7. PubMed ID: 16625674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles.
    Liu W; He Z; Liang J; Zhu Y; Xu H; Yang X
    J Biomed Mater Res A; 2008 Mar; 84(4):1018-25. PubMed ID: 17668863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysics of dopamine-modified quantum dots and effects on biological systems.
    Clarke SJ; Hollmann CA; Zhang Z; Suffern D; Bradforth SE; Dimitrijevic NM; Minarik WG; Nadeau JL
    Nat Mater; 2006 May; 5(5):409-17. PubMed ID: 16617348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels.
    Hsieh SC; Wang FF; Lin CS; Chen YJ; Hung SC; Wang YJ
    Biomaterials; 2006 Mar; 27(8):1656-64. PubMed ID: 16188313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells.
    Anas A; Okuda T; Kawashima N; Nakayama K; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2009 Aug; 3(8):2419-29. PubMed ID: 19653641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphical analysis of flow cytometer data for characterizing controlled fluorescent protein display on λ phage.
    Sokolenko S; Nicastro J; Slavcev R; Aucoin MG
    Cytometry A; 2012 Dec; 81(12):1031-9. PubMed ID: 23027705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-step conjugation of antibodies to quantum dots for labeling cell surface receptors in mammalian cells.
    Iyer G; Xu J; Weiss S
    Methods Mol Biol; 2011; 751():553-63. PubMed ID: 21674354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.