BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1963434)

  • 1. Rapid postnatal developmental changes in the passive proton permeability of the inner membrane in rat liver mitochondria.
    Valcarce C; Vitorica J; Satrústegui J; Cuezva JM
    J Biochem; 1990 Oct; 108(4):642-5. PubMed ID: 1963434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of adenine nucleotides with the adenine nucleotide translocase regulates the developmental changes in proton conductance of the inner mitochondrial membrane.
    Valcarce C; Cuezva JM
    FEBS Lett; 1991 Dec; 294(3):225-8. PubMed ID: 1661684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides.
    Valcarce C; Navarrete RM; Encabo P; Loeches E; Satrústegui J; Cuezva JM
    J Biol Chem; 1988 Jun; 263(16):7767-75. PubMed ID: 2897364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells.
    Baggetto LG; Clottes E; Vial C
    Cancer Res; 1992 Sep; 52(18):4935-41. PubMed ID: 1516050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions.
    Videira RA; Antunes-Madeira MC; Madeira VM
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):209-16. PubMed ID: 11559019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mitochondrial signal peptide from Neurospora crassa increases the permeability of isolated rat liver mitochondria.
    Sokolove PM; Kinnally KW
    Arch Biochem Biophys; 1996 Dec; 336(1):69-76. PubMed ID: 8951036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain.
    Brand MD; Hafner RP; Brown GC
    Biochem J; 1988 Oct; 255(2):535-9. PubMed ID: 2849419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds.
    Brand MD; Turner N; Ocloo A; Else PL; Hulbert AJ
    Biochem J; 2003 Dec; 376(Pt 3):741-8. PubMed ID: 12943530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms.
    Hulbert AJ; Else PL; Manolis SC; Brand MD
    J Comp Physiol B; 2002 Jul; 172(5):387-97. PubMed ID: 12122455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium channel opener, RP 66471, induces membrane depolarization of rat liver mitochondria.
    Szewczyk A; Wójcik G; Nałecz MJ
    Biochem Biophys Res Commun; 1995 Feb; 207(1):126-32. PubMed ID: 7857254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.
    Custódio JB; Cardoso CM; Santos MS; Almeida LM; Vicente JA; Fernandes MA
    Toxicology; 2009 May; 259(1-2):18-24. PubMed ID: 19428939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane.
    Sultan A; Sokolove PM
    Arch Biochem Biophys; 2001 Feb; 386(1):37-51. PubMed ID: 11360999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic activity of liver mitochondria from magnesium-deficient rats.
    Heaton FW; Elie JP
    Magnesium; 1984; 3(1):21-8. PubMed ID: 6237232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata).
    Duong CA; Sepulveda CA; Graham JB; Dickson KA
    J Exp Biol; 2006 Jul; 209(Pt 14):2678-85. PubMed ID: 16809458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability.
    Fernandes MA; Santos MS; Moreno AJ; Duburs G; Oliveira CR; Vicente JA
    J Biochem Mol Toxicol; 2004; 18(3):162-9. PubMed ID: 15252873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes.
    Nobes CD; Brown GC; Olive PN; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12903-9. PubMed ID: 2376579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatic apoptosis in mice.
    Feldmann G; Haouzi D; Moreau A; Durand-Schneider AM; Bringuier A; Berson A; Mansouri A; Fau D; Pessayre D
    Hepatology; 2000 Mar; 31(3):674-83. PubMed ID: 10706558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.