BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 19634343)

  • 1. Development of carvedilol transdermal patches: evaluation of physicochemical, ex vivo and mechanical properties.
    Gannu R; Vishnu YV; Kishan V; Rao YM
    PDA J Pharm Sci Technol; 2008; 62(6):391-401. PubMed ID: 19634343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of nitrendipine transdermal patches: in vitro and ex vivo characterization.
    Gannu R; Vishnu YV; Kishan V; Rao YM
    Curr Drug Deliv; 2007 Jan; 4(1):69-76. PubMed ID: 17269919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of domperidone bilayered matrix type transdermal patches: physicochemical, in vitro and ex vivo characterization.
    Madishetti SK; Palem CR; Gannu R; Thatipamula RP; Panakanti PK; Yamsani MR
    Daru; 2010; 18(3):221-9. PubMed ID: 22615620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro permeation of carvedilol through porcine skin: effect of vehicles and penetration enhancers.
    Gannu R; Vishnu YV; Kishan V; Rao YM
    PDA J Pharm Sci Technol; 2008; 62(4):256-63. PubMed ID: 19174954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of carvedilol-loaded transdermal drug delivery system: In-vitro and in-vivo characterization study.
    Kshirsagar SJ; Bhalekar MR; Mohapatra SK
    Drug Dev Ind Pharm; 2012 Dec; 38(12):1530-7. PubMed ID: 22356303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the Component Excipients on the Quality and Functionality of a Transdermal Film Formulation.
    Saoji SD; Atram SC; Dhore PW; Deole PS; Raut NA; Dave VS
    AAPS PharmSciTech; 2015 Dec; 16(6):1344-56. PubMed ID: 25922089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of mucoadhesive patches for buccal administration of carvedilol.
    Vishnu YV; Chandrasekhar K; Ramesh G; Rao YM
    Curr Drug Deliv; 2007 Jan; 4(1):27-39. PubMed ID: 17269915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transdermal therapeutic system of isradipine: effect of hydrophilic and hydrophobic matrix on in vitro and ex vivo characteristics.
    Tirunagari M; Jangala VR; Khagga M; Gannu R
    Arch Pharm Res; 2010 Jul; 33(7):1025-33. PubMed ID: 20661712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transdermal therapeutic system of carvedilol: effect of hydrophilic and hydrophobic matrix on in vitro and in vivo characteristics.
    Ubaidulla U; Reddy MV; Ruckmani K; Ahmad FJ; Khar RK
    AAPS PharmSciTech; 2007 Jan; 8(1):2. PubMed ID: 17408218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix-type transdermal drug delivery system of trandolapril: in vitro and ex vivo characterization.
    Tirunagari M; Rao Jangala V; Khagga M; Gannu R
    PDA J Pharm Sci Technol; 2010; 64(1):44-53. PubMed ID: 21502003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evaluation of carvedilol transdermal patches.
    Tanwar YS; Chauhan CS; Sharma A
    Acta Pharm; 2007 Jun; 57(2):151-9. PubMed ID: 17507312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and in vivo evaluation of carvedilol buccal mucoadhesive patches.
    Thimmasetty J; Pandey G; Babu P
    Pak J Pharm Sci; 2008 Jul; 21(3):241-8. PubMed ID: 18614419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoemulsion system for the transdermal delivery of a poorly soluble cardiovascular drug.
    Dixit N; Kohli K; Baboota S
    PDA J Pharm Sci Technol; 2008; 62(1):46-55. PubMed ID: 18402367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation of Polymers-Based Methotrexate Patches and Investigation of the Effect of Various Penetration Enhancers: In Vitro, Ex Vivo and In Vivo Characterization.
    Latif MS; Nawaz A; Rashid SA; Akhlaq M; Iqbal A; Khan MJ; Khan MS; Lim V; Alfatama M
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation of an HPMC gel drug reservoir system with ethanol-water as a solvent system and limonene as a penetration enhancer for enhancing in vitro transdermal delivery of nicorandil.
    Al-Saidan SM; Krishnaiah YS; Chandrasekhar DV; Lalla JK; Rama B; Jayaram B; Bhaskar P
    Skin Pharmacol Physiol; 2004; 17(6):310-20. PubMed ID: 15528962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic development of pH-independent controlled release tablets of carvedilol using central composite design and artificial neural networks.
    Aktas E; Eroglu H; Kockan U; Oner L
    Drug Dev Ind Pharm; 2013 Aug; 39(8):1207-16. PubMed ID: 22804226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and in vitro evaluation of buccoadhesive carvedilol tablets.
    Yamsani VV; Gannu R; Kolli C; Rao ME; Yamsani MR
    Acta Pharm; 2007 Jun; 57(2):185-97. PubMed ID: 17507315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation design and in vitro ex vivo evaluation of transdermal patches of Cinnarizine.
    Yamsani VV; Mudulaghar MK; Afreen S; Wajid S; Ravula SK; Babelghaith SD
    Pak J Pharm Sci; 2017 Nov; 30(6):2075-2083. PubMed ID: 29175776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of matrix type transdermal patches of lercanidipine hydrochloride: physicochemical and in-vitro characterization.
    Mamatha T; Venkateswara Rao J; Mukkanti K; Ramesh G
    Daru; 2010; 18(1):9-16. PubMed ID: 22615587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations.
    Mutalik S; Udupa N
    J Pharm Sci; 2004 Jun; 93(6):1577-94. PubMed ID: 15124215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.