These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 19634672)
21. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. Koutsopoulos S J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893 [TBL] [Abstract][Full Text] [Related]
22. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture. Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284 [TBL] [Abstract][Full Text] [Related]
23. Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams. Al-Abboodi A; Fu J; Doran PM; Chan PP Biotechnol Bioeng; 2013 Jan; 110(1):318-26. PubMed ID: 22811278 [TBL] [Abstract][Full Text] [Related]
24. Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication. Sakai S; Liu Y; Mah EJ; Taya M Biofabrication; 2013 Mar; 5(1):015012. PubMed ID: 23319520 [TBL] [Abstract][Full Text] [Related]
25. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Park M; Lee D; Shin S; Hyun J Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635 [TBL] [Abstract][Full Text] [Related]
26. Compatibility of olfactory ensheathing cells with functionalized self-assembling peptide scaffold in vitro. Zhang LL; Huang LH; Zhang ZX; Hao DJ; He BR Chin Med J (Engl); 2013 Oct; 126(20):3891-6. PubMed ID: 24157152 [TBL] [Abstract][Full Text] [Related]
27. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Hosseinkhani H; Hosseinkhani M; Tian F; Kobayashi H; Tabata Y Biomaterials; 2006 Aug; 27(22):4079-86. PubMed ID: 16600365 [TBL] [Abstract][Full Text] [Related]
28. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells]. Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182 [TBL] [Abstract][Full Text] [Related]
29. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107 [TBL] [Abstract][Full Text] [Related]
30. Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitro culture of chondrocytes. Huang X; Zhang Y; Donahue HJ; Lowe TL Tissue Eng; 2007 Nov; 13(11):2645-52. PubMed ID: 17683245 [TBL] [Abstract][Full Text] [Related]
31. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418 [TBL] [Abstract][Full Text] [Related]
32. [Preparation of spider silk protein bilayer small diameter vascular scaffold and blood compatibility analysis in vitro]. Zhao L; Xu Y; Qiu H; Li M; Chen Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):800-4. PubMed ID: 24063166 [TBL] [Abstract][Full Text] [Related]
33. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of electrospun poly(D,L lactide-co-glycolide)80/20 scaffolds loaded with diclofenac sodium for tissue engineering. Nikkola L; Morton T; Balmayor ER; Jukola H; Harlin A; Redl H; van Griensven M; Ashammakhi N Eur J Med Res; 2015 Jun; 20(1):54. PubMed ID: 26044589 [TBL] [Abstract][Full Text] [Related]
35. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
36. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Loo Y; Hauser CA Biomed Mater; 2015 Dec; 11(1):014103. PubMed ID: 26694103 [TBL] [Abstract][Full Text] [Related]
37. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering. Reddy CS; Venugopal JR; Ramakrishna S; Zussman E J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184 [TBL] [Abstract][Full Text] [Related]
38. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells. Zou Z; Liu T; Li J; Li P; Ding Q; Peng G; Zheng Q; Zeng X; Wu Y; Guo X J Biomed Mater Res A; 2014 May; 102(5):1286-93. PubMed ID: 23703883 [TBL] [Abstract][Full Text] [Related]
40. [Experimental study on tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid in vitro]. Yang Z; Chen Z; Liu K; Bai Y; Jiang T; Feng D; Feng G Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Oct; 27(10):1240-5. PubMed ID: 24397139 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]