BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19634676)

  • 21. [Preparation and biocompatibility of a novel strontium-containing calcium sulfate].
    Hou YL; Li X; Xu CP; Song JQ; Huang L; Yu B
    Nan Fang Yi Ke Da Xue Xue Bao; 2016 Jun; 36(7):947-51. PubMed ID: 27435774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Preparation and properties of calcium silicate-phosphate composite bone cements].
    Wang Z; Hu J; Liu X; Chen X; Lü B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):121-4. PubMed ID: 16532825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of biomechanical strength, stability, bioactivity, and in vivo biocompatibility of a novel calcium deficient hydroxyapatite/poly(amino acid) composite cervical vertebra cage.
    Xiong Y; Li H; Zhou C; Yang X; Song Y; Qing Y; Yan Y
    J Biomater Sci Polym Ed; 2014; 25(16):1842-55. PubMed ID: 25162474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of injectable calcium sulfate bone graft material.
    He Y; Gao J; Li X; Ma Z; Zhang Y; Li M; Zhang Y; Wang X; Qiu H; Liu Y
    J Biomater Sci Polym Ed; 2010; 21(10):1313-30. PubMed ID: 20534187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-setting properties and in vitro bioactivity of Ca3SiO5/CaSO4.1/2H2O composite cement.
    Zhao W; Chang J; Zhai W
    J Biomed Mater Res A; 2008 May; 85(2):336-44. PubMed ID: 17688248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties.
    Wu C; Ramaswamy Y; Kwik D; Zreiqat H
    Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strontium substitution of gelatin modified calcium hydrogen phosphates as porous hard tissue substitutes.
    Kruppke B; Heinemann C; Gebert A; Rohnke M; Weiß M; Henß A; Wiesmann HP; Hanke T
    J Biomed Mater Res A; 2021 May; 109(5):722-732. PubMed ID: 32654374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate.
    Sony S; Suresh Babu S; Nishad KV; Varma H; Komath M
    J Mater Sci Mater Med; 2015 Jan; 26(1):5355. PubMed ID: 25578708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute.
    Rhee SH; Lee YK; Lim BS; Yoo JJ; Kim HJ
    Biomacromolecules; 2004; 5(4):1575-9. PubMed ID: 15244480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavior of plaster of Paris-calcium carbonate composite as bone substitute. A study in rats.
    Dewi AH; Ana ID; Wolke J; Jansen J
    J Biomed Mater Res A; 2013 Aug; 101(8):2143-50. PubMed ID: 23239628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous allograft bone scaffolds: doping with strontium.
    Zhao Y; Guo D; Hou S; Zhong H; Yan J; Zhang C; Zhou Y
    PLoS One; 2013; 8(7):e69339. PubMed ID: 23922703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of altered crystalline structure and increased initial compressive strength of calcium sulfate bone graft substitute pellets on new bone formation.
    Urban RM; Turner TM; Hall DJ; Infanger SI; Cheema N; Lim TH; Moseley J; Carroll M; Roark M
    Orthopedics; 2004 Jan; 27(1 Suppl):s113-8. PubMed ID: 14763540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of calcium sulfate/gelatin composite biomaterials for bone repair.
    Gao C; Huo S; Li X; You X; Zhang Y; Gao J
    J Biomater Sci Polym Ed; 2007; 18(7):799-824. PubMed ID: 17688742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.
    Fu Q; Rahaman MN; Fu H; Liu X
    J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.
    Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR
    Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Biocompatibility of alpha-calcium sulfate hemihydrate (CSH)/multi-walled carbon nanotube (MWCNT) composites for bone reconstruction application].
    Lou Y; Pan Z; Wu R; Xue E; Jiang L; Yang G; Zhou Y; Liu J; Huang Q; Xu H
    Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):340-8. PubMed ID: 22712392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of chitosan-coated pressed calcium sulfate pellets combined with recombinant human bone morphogenetic protein 2 on bone formation in femoral condyle-contained bone defects.
    Chen H; Cui X; Yu X; Tian X; Zhang B; Tang P; Wang Y
    J Craniofac Surg; 2010 Jan; 21(1):188-97. PubMed ID: 20098183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of chitosan-coated pressed calcium sulfate pellet combined with recombinant human bone morphogenetic protein 2 on restoration of segmental bone defect.
    Cui X; Zhang B; Wang Y; Gao Y
    J Craniofac Surg; 2008 Mar; 19(2):459-65. PubMed ID: 18362727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration.
    Zhang S; Yang K; Cui F; Jiang Y; E L; Xu B; Liu H
    Biomed Res Int; 2015; 2015():297437. PubMed ID: 26114102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.