These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 19634880)
1. New insights into the activation of Escherichia coli tyrosine kinase revealed by molecular dynamics simulation and biochemical analysis. Lu T; Tan H; Lee D; Chen G; Jia Z Biochemistry; 2009 Aug; 48(33):7986-95. PubMed ID: 19634880 [TBL] [Abstract][Full Text] [Related]
2. Structure of Escherichia coli tyrosine kinase Etk reveals a novel activation mechanism. Lee DC; Zheng J; She YM; Jia Z EMBO J; 2008 Jun; 27(12):1758-66. PubMed ID: 18497741 [TBL] [Abstract][Full Text] [Related]
3. Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. Ilan O; Bloch Y; Frankel G; Ullrich H; Geider K; Rosenshine I EMBO J; 1999 Jun; 18(12):3241-8. PubMed ID: 10369665 [TBL] [Abstract][Full Text] [Related]
4. Identification of structural and molecular determinants of the tyrosine-kinase Wzc and implications in capsular polysaccharide export. Bechet E; Gruszczyk J; Terreux R; Gueguen-Chaignon V; Vigouroux A; Obadia B; Cozzone AJ; Nessler S; Grangeasse C Mol Microbiol; 2010 Sep; 77(5):1315-25. PubMed ID: 20633230 [TBL] [Abstract][Full Text] [Related]
5. Purification, characterization, and crystallization of membrane bound Escherichia coli tyrosine kinase. Chesterman C; Jia Z Protein Expr Purif; 2016 Sep; 125():34-42. PubMed ID: 26363120 [TBL] [Abstract][Full Text] [Related]
6. A novel role for protein-tyrosine kinase Etk from Escherichia coli K-12 related to polymyxin resistance. Lacour S; Doublet P; Obadia B; Cozzone AJ; Grangeasse C Res Microbiol; 2006 Sep; 157(7):637-41. PubMed ID: 16814990 [TBL] [Abstract][Full Text] [Related]
7. Tyrosine-kinase Wzc from Escherichia coli possesses an ATPase activity regulated by autophosphorylation. Soulat D; Jault JM; Geourjon C; Gouet P; Cozzone AJ; Grangeasse C FEMS Microbiol Lett; 2007 Sep; 274(2):252-9. PubMed ID: 17627778 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Lee CC; Jia Y; Li N; Sun X; Ng K; Ambing E; Gao MY; Hua S; Chen C; Kim S; Michellys PY; Lesley SA; Harris JL; Spraggon G Biochem J; 2010 Sep; 430(3):425-37. PubMed ID: 20632993 [TBL] [Abstract][Full Text] [Related]
9. Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations. Thompson D; Lazennec C; Plateau P; Simonson T Proteins; 2008 May; 71(3):1450-60. PubMed ID: 18076053 [TBL] [Abstract][Full Text] [Related]
10. Domain interactions in protein tyrosine kinase Csk. Sondhi D; Cole PA Biochemistry; 1999 Aug; 38(34):11147-55. PubMed ID: 10460171 [TBL] [Abstract][Full Text] [Related]
11. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Jun C; Joo JC; Lee JH; Kim YH J Biotechnol; 2014 Mar; 174():22-8. PubMed ID: 24480573 [TBL] [Abstract][Full Text] [Related]
12. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Krishnamurthy H; Lou H; Kimple A; Vieille C; Cukier RI Proteins; 2005 Jan; 58(1):88-100. PubMed ID: 15521058 [TBL] [Abstract][Full Text] [Related]
13. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins. Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900 [TBL] [Abstract][Full Text] [Related]
14. Subdomain switching reveals regions that harbor substrate specificity and regulatory properties of protein tyrosine kinases. Wang YH; Huang K; Lin X; Sun G Biochemistry; 2007 Sep; 46(35):10162-9. PubMed ID: 17691821 [TBL] [Abstract][Full Text] [Related]
15. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study. Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842 [TBL] [Abstract][Full Text] [Related]
16. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis. Lassila JK; Keeffe JR; Kast P; Mayo SL Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527 [TBL] [Abstract][Full Text] [Related]
17. Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. Grangeasse C; Obadia B; Mijakovic I; Deutscher J; Cozzone AJ; Doublet P J Biol Chem; 2003 Oct; 278(41):39323-9. PubMed ID: 12851388 [TBL] [Abstract][Full Text] [Related]
18. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
19. The role of tyrosine kinase Etk/Bmx in EGF-induced apoptosis of MDA-MB-468 breast cancer cells. Chen KY; Huang LM; Kung HJ; Ann DK; Shih HM Oncogene; 2004 Mar; 23(10):1854-62. PubMed ID: 14676838 [TBL] [Abstract][Full Text] [Related]
20. Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop. Jancewicz LJ; Wheatley RW; Sutendra G; Lee M; Fraser ME; Huber RE Arch Biochem Biophys; 2012 Jan; 517(2):111-22. PubMed ID: 22155115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]