These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 19634996)
1. Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo. Tamaki T; Uchiyama Y; Okada Y; Tono K; Masuda M; Nitta M; Hoshi A; Akatsuka A Stem Cells Dev; 2010 Apr; 19(4):503-12. PubMed ID: 19634996 [TBL] [Abstract][Full Text] [Related]
2. Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium. Tamaki T; Akatsuka A; Okada Y; Uchiyama Y; Tono K; Wada M; Hoshi A; Iwaguro H; Iwasaki H; Oyamada A; Asahara T PLoS One; 2008 Mar; 3(3):e1789. PubMed ID: 18335059 [TBL] [Abstract][Full Text] [Related]
3. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Ishikawa T; Akatsuka A Stem Cells; 2007 Sep; 25(9):2283-90. PubMed ID: 17588936 [TBL] [Abstract][Full Text] [Related]
4. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Nitta M; Hoshi A; Akatsuka A Stem Cells Dev; 2008 Aug; 17(4):653-67. PubMed ID: 18554087 [TBL] [Abstract][Full Text] [Related]
5. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Zhang S; Wang D; Estrov Z; Raj S; Willerson JT; Yeh ET Circulation; 2004 Dec; 110(25):3803-7. PubMed ID: 15596566 [TBL] [Abstract][Full Text] [Related]
6. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells. Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Akatsuka A Histochem Cell Biol; 2007 Oct; 128(4):349-60. PubMed ID: 17762938 [TBL] [Abstract][Full Text] [Related]
7. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta-preprogrammed bone marrow stem cells. Li TS; Hayashi M; Ito H; Furutani A; Murata T; Matsuzaki M; Hamano K Circulation; 2005 May; 111(19):2438-45. PubMed ID: 15883211 [TBL] [Abstract][Full Text] [Related]
8. Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. Iijima Y; Nagai T; Mizukami M; Matsuura K; Ogura T; Wada H; Toko H; Akazawa H; Takano H; Nakaya H; Komuro I FASEB J; 2003 Jul; 17(10):1361-3. PubMed ID: 12738802 [TBL] [Abstract][Full Text] [Related]
9. Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle. Tamaki T; Akatsuka A; Okada Y; Matsuzaki Y; Okano H; Kimura M Exp Cell Res; 2003 Nov; 291(1):83-90. PubMed ID: 14597410 [TBL] [Abstract][Full Text] [Related]
10. Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle. Takebayashi-Suzuki K; Pauliks LB; Eltsefon Y; Mikawa T Dev Biol; 2001 Jun; 234(2):390-401. PubMed ID: 11397008 [TBL] [Abstract][Full Text] [Related]
11. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice. Nagata H; Ii M; Kohbayashi E; Hoshiga M; Hanafusa T; Asahi M Stem Cells Transl Med; 2016 Feb; 5(2):141-51. PubMed ID: 26683873 [TBL] [Abstract][Full Text] [Related]
12. The cellular prion protein identifies bipotential cardiomyogenic progenitors. Hidaka K; Shirai M; Lee JK; Wakayama T; Kodama I; Schneider MD; Morisaki T Circ Res; 2010 Jan; 106(1):111-9. PubMed ID: 19910576 [TBL] [Abstract][Full Text] [Related]
13. Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture. Orlandi A; Pagani F; Avitabile D; Bonanno G; Scambia G; Vigna E; Grassi F; Eusebi F; Fucile S; Pesce M; Capogrossi MC Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1541-9. PubMed ID: 18223188 [TBL] [Abstract][Full Text] [Related]
14. N-Cadherin is a prospective cell surface marker of human mesenchymal stem cells that have high ability for cardiomyocyte differentiation. Ishimine H; Yamakawa N; Sasao M; Tadokoro M; Kami D; Komazaki S; Tokuhara M; Takada H; Ito Y; Kuno S; Yoshimura K; Umezawa A; Ohgushi H; Asashima M; Kurisaki A Biochem Biophys Res Commun; 2013 Sep; 438(4):753-9. PubMed ID: 23899519 [TBL] [Abstract][Full Text] [Related]
16. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells. Yamada Y; Sakurada K; Takeda Y; Gojo S; Umezawa A Exp Cell Res; 2007 Feb; 313(4):698-706. PubMed ID: 17208226 [TBL] [Abstract][Full Text] [Related]
17. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction. Guo HD; Wang HJ; Tan YZ; Wu JH Tissue Eng Part A; 2011 Jan; 17(1-2):45-58. PubMed ID: 20673001 [TBL] [Abstract][Full Text] [Related]
18. Cyclin-dependent kinase 9 forms a complex with GATA4 and is involved in the differentiation of mouse ES cells into cardiomyocytes. Kaichi S; Takaya T; Morimoto T; Sunagawa Y; Kawamura T; Ono K; Shimatsu A; Baba S; Heike T; Nakahata T; Hasegawa K J Cell Physiol; 2011 Jan; 226(1):248-54. PubMed ID: 20665673 [TBL] [Abstract][Full Text] [Related]
19. Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits. Li P; Zhang L Mol Med Rep; 2015 Aug; 12(2):2607-21. PubMed ID: 25975979 [TBL] [Abstract][Full Text] [Related]
20. Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model. Xie CQ; Zhang J; Xiao Y; Zhang L; Mou Y; Liu X; Akinbami M; Cui T; Chen YE Stem Cells Dev; 2007 Feb; 16(1):25-9. PubMed ID: 17348803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]