These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19635010)

  • 41. Modulation of the behavioral and neurochemical effects of psychostimulants by kappa-opioid receptor systems.
    Shippenberg TS; Chefer VI; Zapata A; Heidbreder CA
    Ann N Y Acad Sci; 2001 Jun; 937():50-73. PubMed ID: 11458540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dopamine, time, and impulsivity in humans.
    Pine A; Shiner T; Seymour B; Dolan RJ
    J Neurosci; 2010 Jun; 30(26):8888-96. PubMed ID: 20592211
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterizing the cognitive effects of cocaine: a comprehensive review.
    Spronk DB; van Wel JH; Ramaekers JG; Verkes RJ
    Neurosci Biobehav Rev; 2013 Sep; 37(8):1838-59. PubMed ID: 23876288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dopamine, a common substrate for the rewarding effects of brain stimulation reward, cocaine, and morphine.
    Kornetsky C; Duvauchelle C
    NIDA Res Monogr; 1994; 145():19-39. PubMed ID: 8742806
    [No Abstract]   [Full Text] [Related]  

  • 45. Multiplexing signals in reinforcement learning with internal models and dopamine.
    Nakahara H
    Curr Opin Neurobiol; 2014 Apr; 25():123-9. PubMed ID: 24463329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neurobiology of cocaine addiction: implications for new pharmacotherapy.
    Kalivas PW
    Am J Addict; 2007; 16(2):71-8. PubMed ID: 17453607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental Traumatic Brain Injury during Adolescence Enhances Cocaine Rewarding Efficacy and Dysregulates Dopamine and Neuroimmune Systems in Brain Reward Substrates.
    Cannella LA; Andrews AM; Tran F; Razmpour R; McGary H; Collie C; Tsegaye T; Maynard M; Kaufman MJ; Rawls SM; Ramirez SH
    J Neurotrauma; 2020 Jan; 37(1):27-42. PubMed ID: 31347447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances in the biology of addiction.
    Hemby SE
    Curr Psychiatry Rep; 1999 Dec; 1(2):159-65. PubMed ID: 11122919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Executive dysfunction and reward dysregulation: a high-density electrical mapping study in cocaine abusers.
    Morie KP; De Sanctis P; Garavan H; Foxe JJ
    Neuropharmacology; 2014 Oct; 85():397-407. PubMed ID: 24911989
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chronic cocaine exposure in the SCID mouse model of HIV encephalitis.
    Griffin WC; Middaugh LD; Tyor WR
    Brain Res; 2007 Feb; 1134(1):214-9. PubMed ID: 17189621
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sensitivity to gains during risky decision-making differentiates chronic cocaine users from stimulant-naïve controls.
    Kluwe-Schiavon B; Kexel A; Manenti G; Cole DM; Baumgartner MR; Grassi-Oliveira R; Tobler PN; Quednow BB
    Behav Brain Res; 2020 Feb; 379():112386. PubMed ID: 31778734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reward-related dorsal striatal activity differences between former and current cocaine dependent individuals during an interactive competitive game.
    Hyatt CJ; Assaf M; Muska CE; Rosen RI; Thomas AD; Johnson MR; Hylton JL; Andrews MM; Reynolds BA; Krystal JH; Potenza MN; Pearlson GD
    PLoS One; 2012; 7(5):e34917. PubMed ID: 22606228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imbalanced decision hierarchy in addicts emerging from drug-hijacked dopamine spiraling circuit.
    Keramati M; Gutkin B
    PLoS One; 2013; 8(4):e61489. PubMed ID: 23637842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of opioid receptors by cocaine.
    Unterwald EM
    Ann N Y Acad Sci; 2001 Jun; 937():74-92. PubMed ID: 11458541
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural correlates of inflexible behavior in the orbitofrontal-amygdalar circuit after cocaine exposure.
    Stalnaker TA; Roesch MR; Calu DJ; Burke KA; Singh T; Schoenbaum G
    Ann N Y Acad Sci; 2007 Dec; 1121():598-609. PubMed ID: 17846156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Behavioral screening for cocaine sensitivity in mutagenized zebrafish.
    Darland T; Dowling JE
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11691-6. PubMed ID: 11553778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Psychobiology of cocaine addiction: Contribution of a multi-symptomatic animal model of loss of control.
    Deroche-Gamonet V; Piazza PV
    Neuropharmacology; 2014 Jan; 76 Pt B():437-49. PubMed ID: 23916478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novelty and Inductive Generalization in Human Reinforcement Learning.
    Gershman SJ; Niv Y
    Top Cogn Sci; 2015 Jul; 7(3):391-415. PubMed ID: 25808176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reinforcement learning: the good, the bad and the ugly.
    Dayan P; Niv Y
    Curr Opin Neurobiol; 2008 Apr; 18(2):185-96. PubMed ID: 18708140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Drug-sensitive Reward in Crayfish: Exploring the Neural Basis of Addiction with Automated Learning Paradigms.
    Huber R; Imeh-Nathaniel A; Nathaniel TI; Gore S; Datta U; Bhimani R; Panksepp JB; Panksepp J; van Staaden MJ
    Behav Processes; 2018 Jul; 152():47-53. PubMed ID: 29549032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.