These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 19635452)
21. Induction of heat-shock proteins and accumulation of trehalose by TPN in Saccharomyces cerevisiae. Fujita K; Iwahashi H; Kodama O; Komatsu Y Biochem Biophys Res Commun; 1995 Nov; 216(3):1041-7. PubMed ID: 7488177 [TBL] [Abstract][Full Text] [Related]
22. A compensatory increase in trehalose synthesis in response to desiccation stress in Saccharomyces cerevisiae cells lacking the heat shock protein Hsp12p. Shamrock VJ; Lindsey GG Can J Microbiol; 2008 Jul; 54(7):559-68. PubMed ID: 18641702 [TBL] [Abstract][Full Text] [Related]
23. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response. Jiménez-Martí E; Gomar-Alba M; Palacios A; Ortiz-Julien A; del Olmo ML Appl Microbiol Biotechnol; 2011 Mar; 89(5):1551-61. PubMed ID: 20941492 [TBL] [Abstract][Full Text] [Related]
24. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Ye Y; Zhu Y; Pan L; Li L; Wang X; Lin Y Biochem Biophys Res Commun; 2009 Jul; 385(3):357-62. PubMed ID: 19463789 [TBL] [Abstract][Full Text] [Related]
25. Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Izawa S; Sato M; Yokoigawa K; Inoue Y Appl Microbiol Biotechnol; 2004 Nov; 66(1):108-14. PubMed ID: 15127164 [TBL] [Abstract][Full Text] [Related]
26. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Auesukaree C J Biosci Bioeng; 2017 Aug; 124(2):133-142. PubMed ID: 28427825 [TBL] [Abstract][Full Text] [Related]
27. Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Bouwman J; Kiewiet J; Lindenbergh A; van Eunen K; Siderius M; Bakker BM Yeast; 2011 Jan; 28(1):43-53. PubMed ID: 20803479 [TBL] [Abstract][Full Text] [Related]
28. [The metabolism of trehalose and intracellular glycerol in Candida krusei responding to high osmosis]. Zhang Y; Liang M; Liu DH Sheng Wu Gong Cheng Xue Bao; 2001 May; 17(3):332-5. PubMed ID: 11517613 [TBL] [Abstract][Full Text] [Related]
29. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+). André L; Hemming A; Adler L FEBS Lett; 1991 Jul; 286(1-2):13-7. PubMed ID: 1864360 [TBL] [Abstract][Full Text] [Related]
30. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. Ando A; Tanaka F; Murata Y; Takagi H; Shima J FEMS Yeast Res; 2006 Mar; 6(2):249-67. PubMed ID: 16487347 [TBL] [Abstract][Full Text] [Related]
31. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Modig T; Granath K; Adler L; Lidén G Appl Microbiol Biotechnol; 2007 May; 75(2):289-96. PubMed ID: 17221190 [TBL] [Abstract][Full Text] [Related]
33. Response to oxidative stress caused by H(2)O(2) in Saccharomyces cerevisiae mutants deficient in trehalase genes. Pedreño Y; Gimeno-Alcañiz JV; Matallana E; Argüelles JC Arch Microbiol; 2002 Jun; 177(6):494-9. PubMed ID: 12029395 [TBL] [Abstract][Full Text] [Related]
34. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531 [TBL] [Abstract][Full Text] [Related]
35. [Role of trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells]. Samokhvalov VA; Mel'nikov GV; Ignatov VV Mikrobiologiia; 2004; 73(4):449-54. PubMed ID: 15521168 [TBL] [Abstract][Full Text] [Related]
36. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Wei P; Li Z; Lin Y; He P; Jiang N Biotechnol Lett; 2007 Oct; 29(10):1501-8. PubMed ID: 17541503 [TBL] [Abstract][Full Text] [Related]
37. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae. Roberts GG; Hudson AP Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764 [TBL] [Abstract][Full Text] [Related]
38. Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. Ratnakumar S; Tunnacliffe A FEMS Yeast Res; 2006 Sep; 6(6):902-13. PubMed ID: 16911512 [TBL] [Abstract][Full Text] [Related]
39. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Parrou JL; Teste MA; François J Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1891-1900. PubMed ID: 9202465 [TBL] [Abstract][Full Text] [Related]
40. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p. Nisamedtinov I; Lindsey GG; Karreman R; Orumets K; Koplimaa M; Kevvai K; Paalme T FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]