BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 19635571)

  • 1. Relevance of metal ions for lipase stability: structural rearrangements induced in the Burkholderia glumae lipase by calcium depletion.
    Invernizzi G; Papaleo E; Grandori R; De Gioia L; Lotti M
    J Struct Biol; 2009 Dec; 168(3):562-70. PubMed ID: 19635571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational plasticity of the calcium-binding pocket in the Burkholderia glumae lipase: remodeling induced by mutation of calcium coordinating residues.
    Papaleo E; Invernizzi G
    Biopolymers; 2011 Feb; 95(2):117-26. PubMed ID: 20857506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deactivation and unfolding are uncoupled in a bacterial lipase exposed to heat, low pH and organic solvents.
    Invernizzi G; Casiraghi L; Grandori R; Lotti M
    J Biotechnol; 2009 Apr; 141(1-2):42-6. PubMed ID: 19428729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation.
    Gatti-Lafranconi P; Natalello A; Rehm S; Doglia SM; Pleiss J; Lotti M
    J Mol Biol; 2010 Jan; 395(1):155-66. PubMed ID: 19850050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of a repetitive nine-residue sequence motif for intracellular stability and functional structure of a family I.3 lipase.
    Angkawidjaja C; Paul A; Koga Y; Takano K; Kanaya S
    FEBS Lett; 2005 Aug; 579(21):4707-12. PubMed ID: 16098975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of methanol on a methanol-tolerant bacterial lipase.
    Santambrogio C; Sasso F; Natalello A; Brocca S; Grandori R; Doglia SM; Lotti M
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8609-18. PubMed ID: 23371296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609.
    Dalal S; Singh PK; Raghava S; Rawat S; Gupta MN
    Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):23-31. PubMed ID: 18052929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a membrane-based steric chaperone in complex with its lipase substrate.
    Pauwels K; Lustig A; Wyns L; Tommassen J; Savvides SN; Van Gelder P
    Nat Struct Mol Biol; 2006 Apr; 13(4):374-5. PubMed ID: 16518399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metal dependence of Bacillus subtilis phytase.
    Kerovuo J; Lappalainen I; Reinikainen T
    Biochem Biophys Res Commun; 2000 Feb; 268(2):365-9. PubMed ID: 10679209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase.
    Kim KR; Kwon DY; Yoon SH; Kim WY; Kim KH
    Protein Expr Purif; 2005 Jan; 39(1):124-9. PubMed ID: 15596368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of calcium binding on the structure and stability of human growth hormone.
    Saboury AA; Atri MS; Sanati MH; Moosavi-Movahedi AA; Haghbeen K
    Int J Biol Macromol; 2005 Sep; 36(5):305-9. PubMed ID: 16102809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of glucose to the D-galactose/D-glucose-binding protein from Escherichia coli restores the native protein secondary structure and thermostability that are lost upon calcium depletion.
    D'Auria S; Ausili A; Marabotti A; Varriale A; Scognamiglio V; Staiano M; Bertoli E; Rossi M; Tanfani F
    J Biochem; 2006 Feb; 139(2):213-21. PubMed ID: 16452309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-dependent folding and stability of nuclear hormone receptor DNA-binding domains.
    Low LY; Hernández H; Robinson CV; O'Brien R; Grossmann JG; Ladbury JE; Luisi B
    J Mol Biol; 2002 May; 319(1):87-106. PubMed ID: 12051939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity-based isolation of a bacterial lipase through steric chaperone interactions.
    Pauwels K; Van Gelder P
    Protein Expr Purif; 2008 Jun; 59(2):342-8. PubMed ID: 18397833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone.
    El Khattabi M; Van Gelder P; Bitter W; Tommassen J
    J Biol Chem; 2000 Sep; 275(35):26885-91. PubMed ID: 10859310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants.
    Simons JW; van Kampen MD; Ubarretxena-Belandia I; Cox RC; Alves dos Santos CM; Egmond MR; Verheij HM
    Biochemistry; 1999 Jan; 38(1):2-10. PubMed ID: 9890877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of calcium in the conformational dynamics and thermal stability of the D-galactose/D-glucose-binding protein from Escherichia coli.
    Herman P; Vecer J; Barvik I; Scognamiglio V; Staiano M; de Champdoré M; Varriale A; Rossi M; D'Auria S
    Proteins; 2005 Oct; 61(1):184-95. PubMed ID: 16080150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp. C20.
    Liu CH; Chang JS
    Bioresour Technol; 2008 Apr; 99(6):1616-22. PubMed ID: 17543520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.
    Sasso F; Natalello A; Castoldi S; Lotti M; Santambrogio C; Grandori R
    Biotechnol J; 2016 Jul; 11(7):954-60. PubMed ID: 27067648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability.
    Pauwels K; Sanchez del Pino MM; Feller G; Van Gelder P
    PLoS One; 2012; 7(5):e36999. PubMed ID: 22615867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.