These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 19635588)
1. Evolutionary modification of T-brain (tbr) expression patterns in sand dollar. Minemura K; Yamaguchi M; Minokawa T Gene Expr Patterns; 2009 Oct; 9(7):468-74. PubMed ID: 19635588 [TBL] [Abstract][Full Text] [Related]
2. Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes. Nakata H; Minokawa T Gene Expr Patterns; 2009 Mar; 9(3):152-7. PubMed ID: 19063997 [TBL] [Abstract][Full Text] [Related]
3. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Gross JM; McClay DR Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024 [TBL] [Abstract][Full Text] [Related]
4. Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins). Hibino T; Harada Y; Minokawa T; Nonaka M; Amemiya S Dev Genes Evol; 2004 Nov; 214(11):546-58. PubMed ID: 15372237 [TBL] [Abstract][Full Text] [Related]
5. Expression patterns of three Par-related genes in sea urchin embryos. Shiomi K; Yamaguchi M Gene Expr Patterns; 2008 May; 8(5):323-30. PubMed ID: 18316248 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres. Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036 [TBL] [Abstract][Full Text] [Related]
7. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. McCauley BS; Weideman EP; Hinman VF Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847 [TBL] [Abstract][Full Text] [Related]
8. Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes. Peterson KJ; Harada Y; Cameron RA; Davidson EH Dev Biol; 1999 Mar; 207(2):419-31. PubMed ID: 10068473 [TBL] [Abstract][Full Text] [Related]
9. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746 [TBL] [Abstract][Full Text] [Related]
10. brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening. Rast JP; Cameron RA; Poustka AJ; Davidson EH Dev Biol; 2002 Jun; 246(1):191-208. PubMed ID: 12027442 [TBL] [Abstract][Full Text] [Related]
11. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. Duboc V; Lepage T J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development. Yajima M Evol Dev; 2007; 9(3):257-66. PubMed ID: 17501749 [TBL] [Abstract][Full Text] [Related]
13. Expression pattern of Brachyury in the embryo of the sea urchin Paracentrotus lividus. Croce J; Lhomond G; Gache C Dev Genes Evol; 2001 Dec; 211(12):617-9. PubMed ID: 11819120 [TBL] [Abstract][Full Text] [Related]
14. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Röttinger E; Martindale MQ Dev Biol; 2011 Jun; 354(1):173-90. PubMed ID: 21466800 [TBL] [Abstract][Full Text] [Related]
15. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network. Chen JH; Luo YJ; Su YH Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943 [TBL] [Abstract][Full Text] [Related]
16. On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo. Poustka AJ; Kühn A; Radosavljevic V; Wellenreuther R; Lehrach H; Panopoulou G Evol Dev; 2004; 6(4):227-36. PubMed ID: 15230963 [TBL] [Abstract][Full Text] [Related]
17. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587 [TBL] [Abstract][Full Text] [Related]
18. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development. Croce J; Duloquin L; Lhomond G; McClay DR; Gache C Development; 2006 Feb; 133(3):547-57. PubMed ID: 16396908 [TBL] [Abstract][Full Text] [Related]
19. Expression of the actin gene family in embryos of the sea urchin Lytechinus pictus. Fang H; Brandhorst BP Dev Biol; 1996 Jan; 173(1):306-17. PubMed ID: 8575631 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional regulation of the gene for epidermal growth factor-like peptides in sea urchin embryos. Yamasu K; Suzuki G; Horii K; Suyemitsu T Int J Dev Biol; 2000 Oct; 44(7):777-84. PubMed ID: 11128571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]