These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 19635715)
1. Effects of neuropeptides and vasoactive substances on microcirculation of the callus after tibial osteotomy in rabbits. Vendégh Z; Melly A; Tóth B; Wolf K; Farkas T; Józan J; Hamar J; Kádas I Acta Vet Hung; 2009 Sep; 57(3):427-39. PubMed ID: 19635715 [TBL] [Abstract][Full Text] [Related]
2. Effects of vasoactive substances on the neurovascular structures and microcirculation in the developing callus 10 and 15 days after bone injury. Vendégh Z; Melly A; Tóth B; Wolf K; Farkas T; Kádas I; Hamar J Clin Hemorheol Microcirc; 2012; 50(4):279-91. PubMed ID: 22240366 [TBL] [Abstract][Full Text] [Related]
3. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep. Epari DR; Lienau J; Schell H; Witt F; Duda GN Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913 [TBL] [Abstract][Full Text] [Related]
4. Calcitonin gene-related peptide, substance P, nitric oxide and epinephrine modulate bone marrow micro circulation of the rabbit tibia and femur. Vendégh Z; Melly A; Tóth B; Wolf K; Farkas T; Kádas I; Hamar J Clin Hemorheol Microcirc; 2010; 45(1):9-17. PubMed ID: 20571225 [TBL] [Abstract][Full Text] [Related]
5. Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. Grundnes O; Reikerås O Acta Orthop Scand; 1992 Oct; 63(5):487-91. PubMed ID: 1441940 [TBL] [Abstract][Full Text] [Related]
6. Are bone turnover markers capable of predicting callus consolidation during bone healing? Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561 [TBL] [Abstract][Full Text] [Related]
7. [Bone healing and biochemical blood parameters after arteficial osteotomy of rabbits' femur treated by low-frequency magnetic field]. Turk Z Wien Klin Wochenschr; 2001; 113 Suppl 3():47-52. PubMed ID: 15503621 [TBL] [Abstract][Full Text] [Related]
8. Fracture near press-on interlocking enhances callus mineralisation in a sheep midshaft tibia osteotomy model. Gradl G; Herlyn P; Emmerich J; Friebe U; Martin H; Mittlmeier T Injury; 2014 Jan; 45 Suppl 1():S66-70. PubMed ID: 24355198 [TBL] [Abstract][Full Text] [Related]
9. The osteogenic potential of free periosteal autografts in tibial fractures with severe soft tissue damage: an experimental study. Reynders P; Becker J; Broos P Acta Orthop Belg; 1998 Jun; 64(2):184-92. PubMed ID: 9689760 [TBL] [Abstract][Full Text] [Related]
10. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. Claes L; Eckert-Hübner K; Augat P J Orthop Res; 2002 Sep; 20(5):1099-105. PubMed ID: 12382978 [TBL] [Abstract][Full Text] [Related]
11. The vascular repair of an experimental osteotomy held in an external fixator. Brueton RN; Brookes M; Heatley FW Clin Orthop Relat Res; 1990 Aug; (257):286-304. PubMed ID: 2379366 [TBL] [Abstract][Full Text] [Related]
13. Differential regulation of blood vessel formation between standard and delayed bone healing. Lienau J; Schmidt-Bleek K; Peters A; Haschke F; Duda GN; Perka C; Bail HJ; Schütze N; Jakob F; Schell H J Orthop Res; 2009 Sep; 27(9):1133-40. PubMed ID: 19274756 [TBL] [Abstract][Full Text] [Related]
14. Femur window--a new approach to microcirculation of living bone in situ. Hansen-Algenstaedt N; Schaefer C; Wolfram L; Joscheck C; Schroeder M; Algenstaedt P; Rüther W J Orthop Res; 2005 Sep; 23(5):1073-82. PubMed ID: 15890486 [TBL] [Abstract][Full Text] [Related]
15. Effects of receptor activator of NFkappaB (RANK) signaling blockade on fracture healing. Flick LM; Weaver JM; Ulrich-Vinther M; Abuzzahab F; Zhang X; Dougall WC; Anderson D; O'Keefe RJ; Schwarz EM J Orthop Res; 2003 Jul; 21(4):676-84. PubMed ID: 12798068 [TBL] [Abstract][Full Text] [Related]
16. Effect of local prostaglandin E2 on fracture callus in rabbits. Keller J; Klamer A; Bak B; Suder P Acta Orthop Scand; 1993 Feb; 64(1):59-63. PubMed ID: 8451949 [TBL] [Abstract][Full Text] [Related]
17. Endochondral ossification in fracture callus during long bone repair: the localisation of 'cavity-lining cells' within the cartilage. Ford JL; Robinson DE; Scammell BE J Orthop Res; 2004 Mar; 22(2):368-75. PubMed ID: 15013098 [TBL] [Abstract][Full Text] [Related]
18. Systemic recruitment of osteoblastic cells in fracture healing. Shirley D; Marsh D; Jordan G; McQuaid S; Li G J Orthop Res; 2005 Sep; 23(5):1013-21. PubMed ID: 16140187 [TBL] [Abstract][Full Text] [Related]
19. Local application of VEGF compensates callus deficiency after acute soft tissue trauma--results using a limb-shortening distraction procedure in rabbit tibia. Ochman S; Frey S; Raschke MJ; Deventer JN; Meffert RH J Orthop Res; 2011 Jul; 29(7):1093-8. PubMed ID: 21284032 [TBL] [Abstract][Full Text] [Related]
20. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression. Aro HT; Chao EY Clin Orthop Relat Res; 1993 Aug; (293):8-17. PubMed ID: 8339513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]