These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Chagpar RB; Links PH; Pastor MC; Furber LA; Hawrysh AD; Chamberlain MD; Anderson DH Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5471-6. PubMed ID: 20212113 [TBL] [Abstract][Full Text] [Related]
3. TAT-protein blockade during ischemia/reperfusion reveals critical role for p85 PI3K-PTEN interaction in cardiomyocyte injury. Zhu X; Shao ZH; Li C; Li J; Zhong Q; Learoyd J; Meliton A; Meliton L; Leff AR; Vanden Hoek TL PLoS One; 2014; 9(4):e95622. PubMed ID: 24752319 [TBL] [Abstract][Full Text] [Related]
4. The p85beta regulatory subunit of PI3K serves as a substrate for PTEN protein phosphatase activity during insulin mediated signaling. He J; de la Monte S; Wands JR Biochem Biophys Res Commun; 2010 Jul; 397(3):513-9. PubMed ID: 20515662 [TBL] [Abstract][Full Text] [Related]
5. Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits. Jiang X; Chen S; Asara JM; Balk SP J Biol Chem; 2010 May; 285(20):14980-14989. PubMed ID: 20231295 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Rodríguez-Escudero I; Roelants FM; Thorner J; Nombela C; Molina M; Cid VJ Biochem J; 2005 Sep; 390(Pt 2):613-23. PubMed ID: 15913452 [TBL] [Abstract][Full Text] [Related]
7. Transforming growth factor β (TGF-β) receptor signaling regulates kinase networks and phosphatidylinositol metabolism during T-cell activation. Cattley RT; Lee M; Boggess WC; Hawse WF J Biol Chem; 2020 Jun; 295(24):8236-8251. PubMed ID: 32358062 [TBL] [Abstract][Full Text] [Related]
8. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Fine B; Hodakoski C; Koujak S; Su T; Saal LH; Maurer M; Hopkins B; Keniry M; Sulis ML; Mense S; Hibshoosh H; Parsons R Science; 2009 Sep; 325(5945):1261-5. PubMed ID: 19729658 [TBL] [Abstract][Full Text] [Related]
9. Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/- mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Luo J; Sobkiw CL; Logsdon NM; Watt JM; Signoretti S; O'Connell F; Shin E; Shim Y; Pao L; Neel BG; Depinho RA; Loda M; Cantley LC Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10238-43. PubMed ID: 16006513 [TBL] [Abstract][Full Text] [Related]
10. Signaling via class IA Phosphoinositide 3-kinases (PI3K) in human, breast-derived cell lines. Juvin V; Malek M; Anderson KE; Dion C; Chessa T; Lecureuil C; Ferguson GJ; Cosulich S; Hawkins PT; Stephens LR PLoS One; 2013; 8(10):e75045. PubMed ID: 24124465 [TBL] [Abstract][Full Text] [Related]
11. Requirement of phosphoinositide 3-kinase and Akt for interferon-beta-mediated induction of the beta-R1 (SCYB11) gene. Rani MR; Hibbert L; Sizemore N; Stark GR; Ransohoff RM J Biol Chem; 2002 Oct; 277(41):38456-61. PubMed ID: 12169689 [TBL] [Abstract][Full Text] [Related]
12. PI3K independent activation of mTORC1 as a target in lapatinib-resistant ERBB2+ breast cancer cells. Jegg AM; Ward TM; Iorns E; Hoe N; Zhou J; Liu X; Singh S; Landgraf R; Pegram MD Breast Cancer Res Treat; 2012 Dec; 136(3):683-92. PubMed ID: 23089982 [TBL] [Abstract][Full Text] [Related]
13. Predictive and prognostic significance of p27, Akt, PTEN and PI3K expression in HER2-positive metastatic breast cancer. Okutur K; Bassulu N; Dalar L; Aydin K; Bozkurt M; Pilanci KN; Dogusoy GB; Tecimer C; Mandel NM; Demir G Asian Pac J Cancer Prev; 2015; 16(7):2645-51. PubMed ID: 25854340 [TBL] [Abstract][Full Text] [Related]
14. PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. Wang Q; Liu P; Spangle JM; Von T; Roberts TM; Lin NU; Krop IE; Winer EP; Zhao JJ Oncogene; 2016 Jul; 35(27):3607-12. PubMed ID: 26500061 [TBL] [Abstract][Full Text] [Related]
15. IGF-1 mediates PTEN suppression and enhances cell invasion and proliferation via activation of the IGF-1/PI3K/Akt signaling pathway in pancreatic cancer cells. Ma J; Sawai H; Matsuo Y; Ochi N; Yasuda A; Takahashi H; Wakasugi T; Funahashi H; Sato M; Takeyama H J Surg Res; 2010 May; 160(1):90-101. PubMed ID: 19560785 [TBL] [Abstract][Full Text] [Related]
16. Interaction of the retinal insulin receptor beta-subunit with the p85 subunit of phosphoinositide 3-kinase. Rajala RV; McClellan ME; Chan MD; Tsiokas L; Anderson RE Biochemistry; 2004 May; 43(19):5637-50. PubMed ID: 15134438 [TBL] [Abstract][Full Text] [Related]
17. Features of the reversible sensitivity-resistance transition in PI3K/PTEN/AKT signalling network after HER2 inhibition. Goltsov A; Faratian D; Langdon SP; Mullen P; Harrison DJ; Bown J Cell Signal; 2012 Feb; 24(2):493-504. PubMed ID: 21996585 [TBL] [Abstract][Full Text] [Related]
18. Focal adhesion kinase phosphorylates the phosphatase and tensin homolog deleted on chromosome 10 under the control of p110δ phosphoinositide-3 kinase. Tzenaki N; Aivaliotis M; Papakonstanti EA FASEB J; 2015 Dec; 29(12):4840-52. PubMed ID: 26251180 [TBL] [Abstract][Full Text] [Related]
20. PTEN loss is a predictive marker for HER2-positive metastatic breast cancer patients treated with trastuzumab-based therapies. Tekesin K; Emin Gunes M; Bayrak S; Akar E; Ozturk T; Altinay S; Tural D J BUON; 2019; 24(5):1920-1926. PubMed ID: 31786856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]