These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19636131)

  • 1. Preparation of aligned Cu nanowires by room-temperature reduction of CuO nanowires in electron cyclotron resonance hydrogen plasma.
    Qin Y; Staedler T; Jiang X
    Nanotechnology; 2007 Jan; 18(3):035608. PubMed ID: 19636131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room temperature synthesis of 2D CuO nanoleaves in aqueous solution.
    Zhao Y; Zhao J; Li Y; Ma D; Hou S; Li L; Hao X; Wang Z
    Nanotechnology; 2011 Mar; 22(11):115604. PubMed ID: 21297232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing.
    Dong J; Ren L; Zhang Y; Cui X; Hu P; Xu J
    Talanta; 2015 Jan; 132():719-26. PubMed ID: 25476370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance.
    Li Y; Yang XY; Rooke J; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(2):303-12. PubMed ID: 20546764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode.
    Zhuang Z; Su X; Yuan H; Sun Q; Xiao D; Choi MM
    Analyst; 2008 Jan; 133(1):126-32. PubMed ID: 18087623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CuO nanowires grown from Cu film heated under a N2/O2 flow.
    Zhang K; Rossi C; Tenailleau C; Conedera V
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1418-22. PubMed ID: 19441537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors.
    Guo Z; Seol ML; Kim MS; Ahn JH; Choi YK; Liu JH; Huang XJ
    Nanoscale; 2012 Dec; 4(23):7525-31. PubMed ID: 23099737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of CuO and Cu nanostructures with promising electrochemical and wettability properties.
    Zhang Q; Xu D; Zhou X; Wu X; Zhang K
    Small; 2014 Mar; 10(5):935-43. PubMed ID: 24174010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties.
    Guo Z; Chen X; Li J; Liu JH; Huang XJ
    Langmuir; 2011 May; 27(10):6193-200. PubMed ID: 21491849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO. Evidence for a reductive-oxidative interfacial mechanism.
    Bandara J; Guasaquillo I; Bowen P; Soare L; Jardim WF; Kiwi J
    Langmuir; 2005 Aug; 21(18):8554-9. PubMed ID: 16114971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate.
    Zhang K; Yang Y; Pun EY; Shen R
    Nanotechnology; 2010 Jun; 21(23):235602. PubMed ID: 20463387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides.
    Kim JY; Rodriguez JA; Hanson JC; Frenkel AI; Lee PL
    J Am Chem Soc; 2003 Sep; 125(35):10684-92. PubMed ID: 12940754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Sn doped CuO nanotubes from core-shell Cu/SnO(2) nanowires by the Kirkendall effect.
    Lai M; Mubeen S; Chartuprayoon N; Mulchandani A; Deshusses MA; Myung NV
    Nanotechnology; 2010 Jul; 21(29):295601. PubMed ID: 20585175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of well-aligned ZnGa(2)O(4) nanowires from Ga(2)O(3)/ZnO core-shell nanowires via a Ga(2)O(3)/ZnGa(2)O(4) epitaxial relationship.
    Chang KW; Wu JJ
    J Phys Chem B; 2005 Jul; 109(28):13572-7. PubMed ID: 16852699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.
    El Mel AA; Buffière M; Bouts N; Gautron E; Tessier PY; Henzler K; Guttmann P; Konstantinidis S; Bittencourt C; Snyders R
    Nanotechnology; 2013 Jul; 24(26):265603. PubMed ID: 23732175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization and catalytic property of CuO nano/microspheres via thermal decomposition of cathode-plasma generating Cu2(OH)3NO3 nano/microspheres.
    Zhang ZK; Guo DZ; Zhang GM
    J Colloid Interface Sci; 2011 May; 357(1):95-100. PubMed ID: 21345443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and electrochemical properties of carbon films prepared by a electron cyclotron resonance sputtering method.
    Jia J; Kato D; Kurita R; Sato Y; Maruyama K; Suzuki K; Hirono S; Ando T; Niwa O
    Anal Chem; 2007 Jan; 79(1):98-105. PubMed ID: 17194126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of ultrathin CuO nanowires augmenting oriented attachment crystal growth directed self-assembly of Cu(OH)
    Pathiraja G; Yarbrough R; Rathnayake H
    Nanoscale Adv; 2020 Jul; 2(7):2897-2906. PubMed ID: 36132408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductometric chemical sensor based on individual CuO nanowires.
    Li D; Hu J; Wu R; Lu JG
    Nanotechnology; 2010 Dec; 21(48):485502. PubMed ID: 21051806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.