These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 19636150)

  • 1. Localized CVD growth of oriented and individual carbon nanotubes from nanoscaled dots prepared by lithographic sequences.
    Vigolo B; Cojocaru CS; Faerber J; Arabski J; Gangloff L; Legagneux P; Lezec H; Le Normand F
    Nanotechnology; 2008 Apr; 19(13):135601. PubMed ID: 19636150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes.
    Zeeshan MA; Shou K; Pané S; Pellicer E; Sort J; Sivaraman KM; Baró MD; Nelson BJ
    Nanotechnology; 2011 Jul; 22(27):275713. PubMed ID: 21606563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selected-area growth of carbon nanotubes by the combination of focused ion beam and chemical vapor deposition techniques.
    Jiao J; Dong L; Foxley S; Mosher CL; Tuggle DW
    Microsc Microanal; 2003 Dec; 9(6):516-21. PubMed ID: 14750986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes.
    Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J
    Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passivation oxide controlled selective carbon nanotube growth on metal substrates.
    Bult JB; Sawyer WG; Ajayan PM; Schadler LS
    Nanotechnology; 2009 Feb; 20(8):085302. PubMed ID: 19417446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates.
    Masarapu C; Wei B
    Langmuir; 2007 Aug; 23(17):9046-9. PubMed ID: 17637000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts.
    Ko JR; Ahn WS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicide-induced multi-wall carbon nanotube growth on silicon nanowires.
    Lee JH; Lund IN; Eisenbraun ET; Geer RE
    Nanotechnology; 2011 Feb; 22(8):085603. PubMed ID: 21242615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation.
    Dai K; Peng T; Ke D; Wei B
    Nanotechnology; 2009 Mar; 20(12):125603. PubMed ID: 19420472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes.
    Huang L; White B; Sfeir MY; Huang M; Huang HX; Wind S; Hone J; O'Brien S
    J Phys Chem B; 2006 Jun; 110(23):11103-9. PubMed ID: 16771372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition.
    Min YS; Bae EJ; Oh BS; Kang D; Park W
    J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition.
    Jodin L; Dupuis AC; Rouvière E; Reiss P
    J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicolored carbon nanotubes: decorating patterned carbon nanotube microstructures with quantum dots.
    Lim X; Zhu Y; Cheong FC; Hanafiah NM; Valiyaveettil S; Sow CH
    ACS Nano; 2008 Jul; 2(7):1389-95. PubMed ID: 19206306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal response of tissue phantoms containing multi-walled carbon nanotubes.
    Sarkar S; Fisher J; Rylander C; Rylander MN
    J Biomech Eng; 2010 Apr; 132(4):044505. PubMed ID: 20387978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation.
    Gu YJ; Wong WT
    Langmuir; 2006 Dec; 22(26):11447-52. PubMed ID: 17154638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis.
    Song Z; Cai T; Hanson JC; Rodriguez JA; Hrbek J
    J Am Chem Soc; 2004 Jul; 126(27):8576-84. PubMed ID: 15238017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of surface species in chemical vapor deposited carbon nanotubes.
    Lysaght AC; Chiu WK
    Nanotechnology; 2009 Mar; 20(11):115605. PubMed ID: 19420445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.