These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 19636160)

  • 1. Oscillatory metallic behaviour of carbon nanotube superlattices-an ab initio study.
    Agrawal BK; Pathak A
    Nanotechnology; 2008 Apr; 19(13):135706. PubMed ID: 19636160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of carbon nanotubes with bamboo-shape and pentagon-pentagon fusion defects.
    Lim SH; Ji W; Lin J
    J Nanosci Nanotechnol; 2008 Jan; 8(1):309-13. PubMed ID: 18468075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple localized states and magnetic orderings in partially open zigzag carbon nanotube superlattices: an ab initio study.
    Huang B; Li Z; Son YW; Kim G; Duan W; Ihm J
    J Chem Phys; 2010 Aug; 133(8):084702. PubMed ID: 20815585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube.
    Zhou Z; Steigerwald M; Hybertsen M; Brus L; Friesner RA
    J Am Chem Soc; 2004 Mar; 126(11):3597-607. PubMed ID: 15025489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional calculations, electronic structure, and optical properties of molybdenum bimetallic nitrides Pt2Mo3N and Pd2Mo3N.
    Reshak AH; Auluck S; Kityk IV
    J Phys Chem B; 2011 Apr; 115(13):3363-70. PubMed ID: 21405030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the electronic structure of semiconducting nanotubes resulting from different metal contacts.
    Tarakeshwar P; Kim DM
    J Phys Chem B; 2005 Apr; 109(16):7601-4. PubMed ID: 16851878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and optical properties of finite carbon nanotubes in an electric field.
    Chen RB; Lee CH; Chang CP; Lin MF
    Nanotechnology; 2007 Feb; 18(7):075704. PubMed ID: 21730512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
    Qiao L; Zheng WT; Xu H; Zhang L; Jiang Q
    J Chem Phys; 2007 Apr; 126(16):164702. PubMed ID: 17477619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bromophenyl functionalization of carbon nanotubes: an ab initio study.
    Janssen JL; Beaudin J; Hine ND; Haynes PD; Côté M
    Nanotechnology; 2013 Sep; 24(37):375702. PubMed ID: 23974267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes and related materials.
    Noel Y; D'arco P; Demichelis R; Zicovich-Wilson CM; Dovesi R
    J Comput Chem; 2010 Mar; 31(4):855-62. PubMed ID: 19603502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric properties of HfN/ScN metal/semiconductor superlattices: a first-principles study.
    Saha B; Sands TD; Waghmare UV
    J Phys Condens Matter; 2012 Oct; 24(41):415303. PubMed ID: 23014147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles calculation of the electronic structure and energy loss near edge spectra of chiral carbon nanotubes.
    Bertoni G; Calmels L
    Micron; 2006; 37(5):486-91. PubMed ID: 16376550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why alkali metals preferably bind on structural defects of carbon nanotubes: a theoretical study by first principles.
    Mpourmpakis G; Froudakis G
    J Chem Phys; 2006 Nov; 125(20):204707. PubMed ID: 17144723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.
    Barone V; Heyd J; Scuseria GE
    J Chem Phys; 2004 Apr; 120(15):7169-73. PubMed ID: 15267624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Agrawal PM; Komanduri R
    J Chem Phys; 2009 May; 130(18):184102. PubMed ID: 19449903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron emission originated from free-electron-like states of alkali-doped boron-nitride nanotubes.
    Yan B; Park C; Ihm J; Zhou G; Duan W; Park N
    J Am Chem Soc; 2008 Dec; 130(50):17012-5. PubMed ID: 19012383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of topological defects on the electronic structure and optical spectrum of single-wall carbon nanotubes].
    Xie F; Hu HF; We JW; Zeng H; Peng P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1267-70. PubMed ID: 17944391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.