These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19636472)

  • 1. A method for fabricating microfluidic electrochemical reactors.
    Simms R; Dubinsky S; Yudin A; Kumacheva E
    Lab Chip; 2009 Aug; 9(16):2395-7. PubMed ID: 19636472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses.
    Kovarik ML; Torrence NJ; Spence DM; Martin RS
    Analyst; 2004 May; 129(5):400-5. PubMed ID: 15116230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system.
    Wang J; Bunimovich YL; Sui G; Savvas S; Wang J; Guo Y; Heath JR; Tseng HR
    Chem Commun (Camb); 2006 Aug; (29):3075-7. PubMed ID: 16855690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions.
    Fiddes LK; Raz N; Srigunapalan S; Tumarkan E; Simmons CA; Wheeler AR; Kumacheva E
    Biomaterials; 2010 May; 31(13):3459-64. PubMed ID: 20167361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH; Carlson R; Meldrum DR
    Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active control of the depletion boundary layers in microfluidic electrochemical reactors.
    Yoon SK; Fichtl GW; Kenis PJ
    Lab Chip; 2006 Dec; 6(12):1516-24. PubMed ID: 17203155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical detection for paper-based microfluidics.
    Dungchai W; Chailapakul O; Henry CS
    Anal Chem; 2009 Jul; 81(14):5821-6. PubMed ID: 19485415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic control using photothermal nanoparticles.
    Liu GL; Kim J; Lu Y; Lee LP
    Nat Mater; 2006 Jan; 5(1):27-32. PubMed ID: 16362056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics.
    Klunder KJ; Clark KM; McCord C; Berg KE; Minteer SD; Henry CS
    Lab Chip; 2019 Aug; 19(15):2589-2597. PubMed ID: 31250868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.
    Han A; Wang O; Graff M; Mohanty SK; Edwards TL; Han KH; Bruno Frazier A
    Lab Chip; 2003 Aug; 3(3):150-7. PubMed ID: 15100766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip.
    Karuwan C; Sukthang K; Wisitsoraat A; Phokharatkul D; Patthanasettakul V; Wechsatol W; Tuantranont A
    Talanta; 2011 Jun; 84(5):1384-9. PubMed ID: 21641456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing.
    Greener J; Li W; Ren J; Voicu D; Pakharenko V; Tang T; Kumacheva E
    Lab Chip; 2010 Feb; 10(4):522-4. PubMed ID: 20126695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors.
    Yang SY; Defranco JA; Sylvester YA; Gobert TJ; Macaya DJ; Owens RM; Malliaras GG
    Lab Chip; 2009 Mar; 9(5):704-8. PubMed ID: 19224021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy.
    Wang Y; Shan X; Cui F; Li J; Wang S; Tao N
    Anal Chem; 2015 Jan; 87(1):494-8. PubMed ID: 25479127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.