These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19636540)

  • 21. Multilayers quantitative X-ray fluorescence analysis applied to easel paintings.
    de Viguerie L; Sole VA; Walter P
    Anal Bioanal Chem; 2009 Dec; 395(7):2015-20. PubMed ID: 19688344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Application of calibration curve method and partial least squares regression analysis to quantitative analysis of nephrite samples using XRF].
    Liu S; Su BM; Li QH; Gan FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):245-51. PubMed ID: 25993858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical survey of restorative resins by SEM/EDS and XRF: databases for forensic purposes.
    Bush MA; Miller RG; Norrlander AL; Bush PJ
    J Forensic Sci; 2008 Mar; 53(2):419-25. PubMed ID: 18298491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of non-destructive analysis methods in TENMAK-PAF.
    Bulut S
    Appl Radiat Isot; 2024 Apr; 206():111197. PubMed ID: 38271853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elemental characterization of PM10, PM2.5 and PM1 in the town of Genoa (Italy).
    Ariola V; D'Alessandro A; Lucarelli F; Marcazzan G; Mazzei F; Nava S; Garcia-Orellana I; Prati P; Valli G; Vecchi R; Zucchiatti A
    Chemosphere; 2006 Jan; 62(2):226-32. PubMed ID: 15982708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a secondary lead smelter/solder manufacturer.
    Harper M; Pacolay B
    J Environ Monit; 2006 Jan; 8(1):140-6. PubMed ID: 16395471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.
    Beck L; Rousselière H; Castaing J; Duran A; Lebon M; Moignard B; Plassard F
    Talanta; 2014 Nov; 129():459-64. PubMed ID: 25127619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Application and research progress of element analysis of urinary calculi using modern instruments].
    Ouyang JM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):365-71. PubMed ID: 16826927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intra-tumor distribution of metallofullerene using micro-particle induced X-ray emission (PIXE).
    Yamamoto Y; Yamamoto T; Horiguchi Y; Shirakawa M; Satoh T; Koka M; Nagasaki Y; Nakai K; Matsumura A
    Appl Radiat Isot; 2014 Jun; 88():114-7. PubMed ID: 24491681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison between levels of trace elements in normal and cancer inoculated mice by XRF and PIXE.
    Feldstein H; Cohen Y; Shenberg C; Klein A; Kojller M; Maenhaut W; Cafmeyer J; Cornelis R
    Biol Trace Elem Res; 1998 Feb; 61(2):169-80. PubMed ID: 9517488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils.
    Vanhoof C; Corthouts V; Tirez K
    J Environ Monit; 2004 Apr; 6(4):344-50. PubMed ID: 15054544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle-induced X-ray emission (PIXE) analysis of trace elements in human coronal dentin.
    Möller B; Carlsson LE
    Swed Dent J; 1984; 8(2):67-72. PubMed ID: 6588603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Progress in knowledge-based X-ray fluorescence spectrometry].
    Luo LQ; Ma GZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Dec; 21(6):871-5. PubMed ID: 12958920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multielement analysis of biological materials by particle-induced X-ray emission (PIXE).
    Maenhaut W
    Scanning Microsc; 1990 Mar; 4(1):43-59; discussion 59-62. PubMed ID: 2195651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples.
    Sterling DA; Lewis RD; Luke DA; Shadel BN
    Environ Res; 2000 Jun; 83(2):174-9. PubMed ID: 10856190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.
    Hutton LA; O'Neil GD; Read TL; Ayres ZJ; Newton ME; Macpherson JV
    Anal Chem; 2014 May; 86(9):4566-72. PubMed ID: 24701959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-site analysis of archaeological artifacts excavated from the site on the outcrop at Northwest Saqqara, Egypt, by using a newly developed portable fluorescence spectrometer and diffractometer.
    Abe Y; Nakai I; Takahashi K; Kawai N; Yoshimura S
    Anal Bioanal Chem; 2009 Dec; 395(7):1987-96. PubMed ID: 19789857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards the differentiation of non-treated and treated corundum minerals by ion-beam-induced luminescence and other complementary techniques.
    Calvo del Castillo H; Deprez N; Dupuis T; Mathis F; Deneckere A; Vandenabeele P; Calderón T; Strivay D
    Anal Bioanal Chem; 2009 Jun; 394(4):1043-58. PubMed ID: 19241064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses.
    Kilbride C; Poole J; Hutchings TR
    Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a bronze foundry.
    Harper M; Pacolay B; Andrew ME
    J Environ Monit; 2005 Jun; 7(6):592-7. PubMed ID: 15931420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.