BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19637255)

  • 1. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2).
    Chueh WC; Haile SM
    ChemSusChem; 2009; 2(8):735-9. PubMed ID: 19637255
    [No Abstract]   [Full Text] [Related]  

  • 2. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of methane replacement in gas hydrate by carbon dioxide.
    Voronov VP; Gorodetskii EE; Muratov AR
    J Phys Chem B; 2010 Sep; 114(38):12314-8. PubMed ID: 20822123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steam plasmatron gasification of distillers grains residue from ethanol production.
    Shie JL; Tsou FJ; Lin KL
    Bioresour Technol; 2010 Jul; 101(14):5571-7. PubMed ID: 20163957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidising CO to CO2 using ceria nanoparticles.
    Sayle TX; Parker SC; Sayle DC
    Phys Chem Chem Phys; 2005 Aug; 7(15):2936-41. PubMed ID: 16189614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of new microemulsion prepared "Pt-in-Ceria" catalyst with conventional "Pt-on-Ceria" catalyst for water-gas shift reaction.
    Yeung CM; Meunier F; Burch R; Thompsett D; Tsang SC
    J Phys Chem B; 2006 May; 110(17):8540-3. PubMed ID: 16640402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation.
    Chueh WC; Haile SM
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3269-94. PubMed ID: 20566511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explosion characteristics of synthesised biogas at various temperatures.
    Dupont L; Accorsi A
    J Hazard Mater; 2006 Aug; 136(3):520-5. PubMed ID: 16466853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From carbon dioxide to methane: homogeneous reduction of carbon dioxide with hydrosilanes catalyzed by zirconium-borane complexes.
    Matsuo T; Kawaguchi H
    J Am Chem Soc; 2006 Sep; 128(38):12362-3. PubMed ID: 16984155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on methane conversion to syngas over nano Pt-CeO2-ZrO2/MgO catalysts: Structure and catalytic behavior of catalysts prepared by using ion exchange resin method.
    Yang M; Guo H; Li Y; Wang W; Zhou L
    J Environ Sci (China); 2011 Jun; 23 Suppl():S53-8. PubMed ID: 25084594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process.
    Cao Q; Wu S; Lui H; Liu D; Qiu P
    Chemosphere; 2009 Aug; 76(9):1199-205. PubMed ID: 19577276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laboratory-scale comparison of compost and sand--compost--perlite as methane-oxidizing biofilter media.
    Philopoulos A; Ruck J; McCartney D; Felske C
    Waste Manag Res; 2009 Mar; 27(2):138-46. PubMed ID: 19244413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-target produced [11C]methane: Increased specific radioactivity.
    Andersson J; Truong P; Halldin C
    Appl Radiat Isot; 2009 Jan; 67(1):106-10. PubMed ID: 19013077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-stage production of highly concentrated hydrogen from biomass-derived syngas.
    He L; Chen D
    ChemSusChem; 2010 Oct; 3(10):1169-71. PubMed ID: 20687054
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhanced hydrogen storage in Ni/Ce composite oxides.
    Berlouis LE; Jubin C; McMillan BG; Morrow J; Spicer MD; Tang LP; Bordelanne O; Weston M
    Phys Chem Chem Phys; 2007 Dec; 9(45):6032-9. PubMed ID: 18004418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of enhanced methane oxidation in compost: temperature and moisture response.
    Mor S; De Visscher A; Ravindra K; Dahiya RP; Chandra A; Van Cleemput O
    Waste Manag; 2006; 26(4):381-8. PubMed ID: 16446082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to oxidize atmospheric CH(4)?--A challenge for the future.
    Chazelas B; Léger A; Ollivier M
    Sci Total Environ; 2006 Feb; 354(2-3):292-4. PubMed ID: 16185748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M
    J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.
    Ha KS; Bae JW; Woo KJ; Jun KW
    Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.