BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 19637619)

  • 21. Overexpression of csc1-1. A plausible strategy to obtain wine yeast strains undergoing accelerated autolysis.
    Cebollero E; Martinez-Rodriguez A; Carrascosa AV; Gonzalez R
    FEMS Microbiol Lett; 2005 May; 246(1):1-9. PubMed ID: 15869955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae.
    Kong QX; Gu JG; Cao LM; Zhang AL; Chen X; Zhao XM
    Biotechnol Lett; 2006 Dec; 28(24):2033-8. PubMed ID: 17043906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Cloning of the promoter region of the trehalose-6-phosphate synthase gene TPS1 of the self-flocculating yeast and exploration of the promoter activity on ethanol stress].
    Lin B; Zhao X; Zhang Q; Ma L; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):1014-8. PubMed ID: 20954405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production.
    Cunha AF; Missawa SK; Gomes LH; Reis SF; Pereira GA
    FEMS Yeast Res; 2006 Mar; 6(2):280-7. PubMed ID: 16487349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain.
    Liu XF; Wang ZY; Wang JJ; Lu Y; He XP; Zhang BR
    Lett Appl Microbiol; 2009 Jul; 49(1):117-23. PubMed ID: 19413763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation.
    Chu BC; Lee H
    Biotechnol Adv; 2007; 25(5):425-41. PubMed ID: 17524590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate.
    Yu KO; Kim SW; Han SO
    J Biotechnol; 2010 Oct; 150(2):209-14. PubMed ID: 20854852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process.
    Zhang J; Reddy J; Buckland B; Greasham R
    Biotechnol Bioeng; 2003 Jun; 82(6):640-52. PubMed ID: 12673763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts.
    Piddocke MP; Kreisz S; Heldt-Hansen HP; Nielsen KF; Olsson L
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):453-64. PubMed ID: 19343343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards industrial pentose-fermenting yeast strains.
    Hahn-Hägerdal B; Karhumaa K; Fonseca C; Spencer-Martins I; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):937-53. PubMed ID: 17294186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production.
    Mukherjee V; Steensels J; Lievens B; Van de Voorde I; Verplaetse A; Aerts G; Willems KA; Thevelein JM; Verstrepen KJ; Ruyters S
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9483-98. PubMed ID: 25267160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch.
    Yamada R; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1491-8. PubMed ID: 19707752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.
    Watanabe M; Tamura K; Magbanua JP; Takano K; Kitamoto K; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2007 Sep; 104(3):163-70. PubMed ID: 17964478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic engineering of industrial strains of Saccharomyces cerevisiae.
    Le Borgne S
    Methods Mol Biol; 2012; 824():451-65. PubMed ID: 22160914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production.
    Doğan A; Demirci S; Aytekin AÖ; Şahin F
    Appl Biochem Biotechnol; 2014 Sep; 174(1):28-42. PubMed ID: 24908051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Construction of recombinant Saccharomyces cerevisiae producing 1,3-propanediol by one step method].
    Ma Z; Rao ZM; Shen W; Fang HY; Zhuge J
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):598-603. PubMed ID: 17944357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Comparison of three approaches to breed industrial Saccharomyces cerevisiae strains with improved ethanol tolerance].
    Li Q; Zhao X; Kim JS; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1672-5. PubMed ID: 24701832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.