These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 19637846)

  • 1. On the nature of intermolecular interactions in nucleic acid base-amino acid side-chain complexes.
    Czyznikowska Z; Lipkowski P; Góra RW; Zaleśny R; Cheng AC
    J Phys Chem B; 2009 Aug; 113(33):11511-20. PubMed ID: 19637846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural variability and the nature of intermolecular interactions in Watson-Crick B-DNA base pairs.
    Czyznikowska Z; Góra RW; Zaleśny R; Lipkowski P; Jarzembska KN; Dominiak PM; Leszczynski J
    J Phys Chem B; 2010 Jul; 114(29):9629-44. PubMed ID: 20604521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features of protein-nucleic acid recognition sites.
    Nadassy K; Wodak SJ; Janin J
    Biochemistry; 1999 Feb; 38(7):1999-2017. PubMed ID: 10026283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio interaction energies of hydrogen-bonded amino acid side chain[bond]nucleic acid base interactions.
    Cheng AC; Frankel AD
    J Am Chem Soc; 2004 Jan; 126(2):434-5. PubMed ID: 14719918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach.
    Hesselmann A; Jansen G; Schütz M
    J Am Chem Soc; 2006 Sep; 128(36):11730-1. PubMed ID: 16953592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intriguing relations of interaction energy components in stacked nucleic acids.
    Langner KM; Sokalski WA; Leszczynski J
    J Chem Phys; 2007 Sep; 127(11):111102. PubMed ID: 17887817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength and nature of hydrogen bonding interactions in mono- and di-hydrated formamide complexes.
    Angelina EL; Peruchena NM
    J Phys Chem A; 2011 May; 115(18):4701-10. PubMed ID: 21506592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the electrostatic interaction between nucleic acid bases.
    Toczyłowski RR; Cybulski SM
    J Chem Phys; 2005 Oct; 123(15):154312. PubMed ID: 16252953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy decomposition analysis of covalent bonds and intermolecular interactions.
    Su P; Li H
    J Chem Phys; 2009 Jul; 131(1):014102. PubMed ID: 19586091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity in noncovalent interactions of biologically relevant molecules.
    Antony J; Brüske B; Grimme S
    Phys Chem Chem Phys; 2009 Oct; 11(38):8440-7. PubMed ID: 19774274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The small planarization barriers for the amino group in the nucleic acid bases.
    Wang S; Schaefer HF
    J Chem Phys; 2006 Jan; 124(4):044303. PubMed ID: 16460158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron density and energy decomposition analysis in hydrogen-bonded complexes of azabenzenes with water, acetamide, and thioacetamide.
    Senthilkumar L; Ghanty TK; Ghosh SK
    J Phys Chem A; 2005 Aug; 109(33):7575-82. PubMed ID: 16834127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane.
    Langner KM; Kedzierski P; Sokalski WA; Leszczynski J
    J Phys Chem B; 2006 May; 110(19):9720-7. PubMed ID: 16686524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H-bonded complexes of aniline with HF/F- and anilide with HF in terms of symmetry-adapted perturbation, atoms in molecules, and natural bond orbitals theories.
    Szatyłowicz H; Krygowski TM; Panek JJ; Jezierska A
    J Phys Chem A; 2008 Oct; 112(40):9895-905. PubMed ID: 18778043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperativity in hydrogen-bonded interactions: ab initio and "atoms in molecules" analyses.
    Ziółkowski M; Grabowski SJ; Leszczynski J
    J Phys Chem A; 2006 May; 110(20):6514-21. PubMed ID: 16706409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules.
    McNamara JP; Hillier IH
    Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large changes of static electric properties induced by hydrogen bonding: an ab initio study of linear HCN oligomers.
    Góra RW; Zaleśny R; Zawada A; Bartkowiak W; Skwara B; Papadopoulos MG; Silva DL
    J Phys Chem A; 2011 May; 115(18):4691-700. PubMed ID: 21491879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How short can the H...H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions.
    Grabowski SJ; Sokalski WA; Leszczynski J
    J Phys Chem A; 2005 May; 109(19):4331-41. PubMed ID: 16833763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of free energy landscape for base-amino acid interactions using ab initio force field and extensive sampling.
    Yoshida T; Nishimura T; Aida M; Pichierri F; Gromiha MM; Sarai A
    Biopolymers; 2001-2002; 61(1):84-95. PubMed ID: 11891631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions.
    Lu YX; Zou JW; Wang YH; Jiang YJ; Yu QS
    J Phys Chem A; 2007 Oct; 111(42):10781-8. PubMed ID: 17918810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.