These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 1963810)
1. Constituents of the leaves of Woodfordia fruticosa Kurz. I. Isolation, structure, and proton and carbon-13 nuclear magnetic resonance signal assignments of woodfruticosin (woodfordin C), an inhibitor of deoxyribonucleic acid topoisomerase II. Kadota S; Takamori Y; Nyein KN; Kikuchi T; Tanaka K; Ekimoto H Chem Pharm Bull (Tokyo); 1990 Oct; 38(10):2687-97. PubMed ID: 1963810 [TBL] [Abstract][Full Text] [Related]
2. Woodfordin C, a macro-ring hydrolyzable tannin dimer with antitumor activity, and accompanying dimers from Woodfordia fruticosa flowers. Yoshida T; Chou T; Nitta A; Miyamoto K; Koshiura R; Okuda T Chem Pharm Bull (Tokyo); 1990 May; 38(5):1211-7. PubMed ID: 2393947 [TBL] [Abstract][Full Text] [Related]
3. Woodfruticosin (woodfordin C), a new inhibitor of DNA topoisomerase II. Experimental antitumor activity. Kuramochi-Motegi A; Kuramochi H; Kobayashi F; Ekimoto H; Takahashi K; Kadota S; Takamori Y; Kikuchi T Biochem Pharmacol; 1992 Nov; 44(10):1961-5. PubMed ID: 1333201 [TBL] [Abstract][Full Text] [Related]
4. Woodfordin D and oenothein A, trimeric hydrolyzable tannins of macro-ring structure with antitumor activity. Yoshida T; Chou T; Matsuda M; Yasuhara T; Yazaki K; Hatano T; Nitta A; Okuda T Chem Pharm Bull (Tokyo); 1991 May; 39(5):1157-62. PubMed ID: 1913994 [TBL] [Abstract][Full Text] [Related]
5. Woodfordia fruticosa: traditional uses and recent findings. Das PK; Goswami S; Chinniah A; Panda N; Banerjee S; Sahu NP; Achari B J Ethnopharmacol; 2007 Mar; 110(2):189-99. PubMed ID: 17276634 [TBL] [Abstract][Full Text] [Related]
6. Camelliin B and nobotanin I, macrocyclic ellagitannin dimers and related dimers, and their antitumor activity. Yoshida T; Chou T; Haba K; Okano Y; Shingu T; Miyamoto K; Koshiura R; Okuda T Chem Pharm Bull (Tokyo); 1989 Nov; 37(11):3174-6. PubMed ID: 2632067 [TBL] [Abstract][Full Text] [Related]
7. Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Clore GM; Bax A; Driscoll PC; Wingfield PT; Gronenborn AM Biochemistry; 1990 Sep; 29(35):8172-84. PubMed ID: 2261471 [TBL] [Abstract][Full Text] [Related]
8. Tannins of theaceous plants. V. Camelliatannins F, G and H, three new tannins from Camellia japonica L. Han L; Hatano T; Yoshida T; Okuda T Chem Pharm Bull (Tokyo); 1994 Jul; 42(7):1399-409. PubMed ID: 7923462 [TBL] [Abstract][Full Text] [Related]
9. A dimeric hydrolysable tannin from Camellia oleifera. Yoshida T; Nakazawa T; Hatano T; Yang RC; Yang LL; Yen KY; Okuda T Phytochemistry; 1994 Sep; 37(1):241-4. PubMed ID: 7765613 [TBL] [Abstract][Full Text] [Related]
10. Woodfordia fruticosa (L.) Kurz: in vitro biotechnological interventions and perspectives. Aileni M; Bulle M; Malavath RN; Thurpu S; Bandaram K; Balkampeta B; Marri M; Singasani VSR; Murthy EN Appl Microbiol Biotechnol; 2023 Oct; 107(19):5855-5871. PubMed ID: 37522947 [TBL] [Abstract][Full Text] [Related]
11. Tannins and related compounds. LXXXIV. Isolation and characterization of five new hydrolyzable tannins from the bark of Mallotus japonicus. Saijo R; Nonaka G; Nishioka I Chem Pharm Bull (Tokyo); 1989 Aug; 37(8):2063-70. PubMed ID: 2598308 [TBL] [Abstract][Full Text] [Related]
12. Tannins of cornaceous plants. I. Cornusiins A, B and C, dimeric monomeric and trimeric hydrolyzable tannins from Cornus officinalis, and orientation of valoneoyl group in related tannins. Hatano T; Ogawa N; Kira R; Yasuhara T; Okuda T Chem Pharm Bull (Tokyo); 1989 Aug; 37(8):2083-90. PubMed ID: 2480850 [TBL] [Abstract][Full Text] [Related]
14. Two novel dicarboxylic Acid derivatives and a new dimeric hydrolyzable tannin from walnuts. Ito H; Okuda T; Fukuda T; Hatano T; Yoshida T J Agric Food Chem; 2007 Feb; 55(3):672-9. PubMed ID: 17263459 [TBL] [Abstract][Full Text] [Related]
15. Oligomeric hydrolyzable tannins from Monochaetum multiflorum. Isaza JH; Ito H; Yoshida T Phytochemistry; 2004 Feb; 65(3):359-67. PubMed ID: 14751308 [TBL] [Abstract][Full Text] [Related]
16. Hydrolyzable tannins of tamaricaceous plants. III. Hellinoyl- and macrocyclic-type ellagitannins from Tamarix nilotica. Orabi MA; Taniguchi S; Yoshimura M; Yoshida T; Kishino K; Sakagami H; Hatano T J Nat Prod; 2010 May; 73(5):870-9. PubMed ID: 20405847 [TBL] [Abstract][Full Text] [Related]
17. Tannins and related polyphenols of rosaceous medicinal plants. IV. Roxbins A and B from Rosa roxburghii fruits. Yoshida T; Chen XM; Hatano T; Fukushima M; Okuda T Chem Pharm Bull (Tokyo); 1987 May; 35(5):1817-22. PubMed ID: 3664796 [No Abstract] [Full Text] [Related]
18. Hydrolyzable tannins and related polyphenols from Eucalyptus globulus. Hou AJ; Liu YZ; Yang H; Lin ZW; Sun HD J Asian Nat Prod Res; 2000; 2(3):205-12. PubMed ID: 11256694 [TBL] [Abstract][Full Text] [Related]
19. Assignment of the 13C nuclear magnetic resonance spectrum of a short DNA-duplex with 1H-detected two-dimensional heteronuclear correlation spectroscopy. Leupin W; Wagner G; Denny WA; Wüthrich K Nucleic Acids Res; 1987 Jan; 15(1):267-75. PubMed ID: 3822804 [TBL] [Abstract][Full Text] [Related]
20. Assignments of 1H and 13C NMR spectral data for ondansetron and its two novel metabolites, 1-hydroxy-ondansetron diastereoisomers. Duan M; Huang H; Li X; Chen X; Zhong D Magn Reson Chem; 2006 Oct; 44(10):972-5. PubMed ID: 16835896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]