BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 19638274)

  • 61. Role of the thrombin insertion loop 144-155. Study of thrombin mutations W148G, K154E and a thrombin-based synthetic peptide.
    Bouton MC; Plantier JL; Dembak M; Guillin MC; Rabiet MJ; Jandrot-Perrus M
    Eur J Biochem; 1995 Apr; 229(2):526-32. PubMed ID: 7744076
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular events that control the protein C anticoagulant pathway.
    Esmon CT
    Thromb Haemost; 1993 Jul; 70(1):29-35. PubMed ID: 8236111
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Conversion of thrombin into an anticoagulant by protein engineering.
    Gibbs CS; Coutré SE; Tsiang M; Li WX; Jain AK; Dunn KE; Law VS; Mao CT; Matsumura SY; Mejza SJ
    Nature; 1995 Nov; 378(6555):413-6. PubMed ID: 7477382
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Probing thrombin's ability to accommodate a V34F substitution within the factor XIII activation peptide segment (28-41).
    Isetti G; Maurer MC
    J Pept Res; 2004 Mar; 63(3):241-52. PubMed ID: 15049836
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dabigatran and Argatroban Diametrically Modulate Thrombin Exosite Function.
    Yeh CH; Stafford AR; Leslie BA; Fredenburgh JC; Weitz JI
    PLoS One; 2016; 11(6):e0157471. PubMed ID: 27305147
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Allosteric changes in solvent accessibility observed in thrombin upon active site occupation.
    Croy CH; Koeppe JR; Bergqvist S; Komives EA
    Biochemistry; 2004 May; 43(18):5246-55. PubMed ID: 15122890
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Discovery of amino acid motifs for thrombin cleavage and validation using a model substrate.
    Ng NM; Pierce JD; Webb GI; Ratnikov BI; Wijeyewickrema LC; Duncan RC; Robertson AL; Bottomley SP; Boyd SE; Pike RN
    Biochemistry; 2011 Dec; 50(48):10499-507. PubMed ID: 22050556
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mutagenesis studies toward understanding the mechanism of the cofactor function of thrombomodulin.
    Rezaie AR; Yang L
    Biophys Chem; 2005 Oct; 117(3):255-61. PubMed ID: 15970373
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [The critical role of the interaction of anion-binding thrombin exosite with complementary segment of the Aalpha-chain of fibrinogen in detecting high specificity of the enzyme].
    Sereĭskaia AA; Smirnova IV; Karabut LV; Chetyrkina SN
    Biokhimiia; 1994 Mar; 59(3):360-7. PubMed ID: 8180269
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand.
    Boyle AJ; Roddick LA; Bhakta V; Lambourne MD; Junop MS; Liaw PC; Weitz JI; Sheffield WP
    BMC Biochem; 2013 Mar; 14():6. PubMed ID: 23496873
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crystal structure of thrombin bound to heparin.
    Carter WJ; Cama E; Huntington JA
    J Biol Chem; 2005 Jan; 280(4):2745-9. PubMed ID: 15548541
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular basis of thrombomodulin activation of slow thrombin.
    Adams TE; Li W; Huntington JA
    J Thromb Haemost; 2009 Oct; 7(10):1688-95. PubMed ID: 19656282
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigation of thrombin activity with PAR 1-based fluorogenic peptides.
    Vieira SM; dos Reis FG; Geraldo R; Dutra DL; Juliano L; Julianod MA; Mignaco JA; Zingali RB
    Protein Pept Lett; 2013 Oct; 20(10):1129-35. PubMed ID: 23688151
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structures of thrombin complexes with a designed and a natural exosite peptide inhibitor.
    Qiu X; Yin M; Padmanabhan KP; Krstenansky JL; Tulinsky A
    J Biol Chem; 1993 Sep; 268(27):20318-26. PubMed ID: 8376390
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Exosites 1 and 2 are essential for protection of fibrin-bound thrombin from heparin-catalyzed inhibition by antithrombin and heparin cofactor II.
    Becker DL; Fredenburgh JC; Stafford AR; Weitz JI
    J Biol Chem; 1999 Mar; 274(10):6226-33. PubMed ID: 10037709
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Macromolecular substrate-binding exosites on both the heavy and light chains of factor XIa mediate the formation of the Michaelis complex required for factor IX-activation.
    Sinha D; Marcinkiewicz M; Navaneetham D; Walsh PN
    Biochemistry; 2007 Aug; 46(34):9830-9. PubMed ID: 17676929
    [TBL] [Abstract][Full Text] [Related]  

  • 77. N-glycans and the N terminus of protein C inhibitor affect the cofactor-enhanced rates of thrombin inhibition.
    Sun W; Parry S; Panico M; Morris HR; Kjellberg M; Engström A; Dell A; Schedin-Weiss S
    J Biol Chem; 2008 Jul; 283(27):18601-11. PubMed ID: 18467335
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Long range communication between exosites 1 and 2 modulates thrombin function.
    Petrera NS; Stafford AR; Leslie BA; Kretz CA; Fredenburgh JC; Weitz JI
    J Biol Chem; 2009 Sep; 284(38):25620-9. PubMed ID: 19589779
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular Interactions of Thrombin.
    Tulinsky A
    Semin Thromb Hemost; 1996; 22(2):117-24. PubMed ID: 8807707
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thrombin-thrombomodulin interaction: energetics and potential role of water as an allosteric effector.
    De Cristofaro R; Picozzi M; De Candia E; Rocca B; Landolfi R
    Biochem J; 1995 Aug; 310 ( Pt 1)(Pt 1):49-53. PubMed ID: 7646471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.