These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 19638317)
1. Understanding CYP2D6 interactions. de Groot MJ; Wakenhut F; Whitlock G; Hyland R Drug Discov Today; 2009 Oct; 14(19-20):964-72. PubMed ID: 19638317 [TBL] [Abstract][Full Text] [Related]
2. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Wang B; Yang LP; Zhang XZ; Huang SQ; Bartlam M; Zhou SF Drug Metab Rev; 2009; 41(4):573-643. PubMed ID: 19645588 [TBL] [Abstract][Full Text] [Related]
3. Analysis of CYP2D6 substrate interactions by computational methods. Ito Y; Kondo H; Goldfarb PS; Lewis DF J Mol Graph Model; 2008 Feb; 26(6):947-56. PubMed ID: 17764997 [TBL] [Abstract][Full Text] [Related]
4. Validation of model of cytochrome P450 2D6: an in silico tool for predicting metabolism and inhibition. Kemp CA; Flanagan JU; van Eldik AJ; Maréchal JD; Wolf CR; Roberts GC; Paine MJ; Sutcliffe MJ J Med Chem; 2004 Oct; 47(22):5340-6. PubMed ID: 15481972 [TBL] [Abstract][Full Text] [Related]
5. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism. Gibbs JP; Hyland R; Youdim K Drug Metab Dispos; 2006 Sep; 34(9):1516-22. PubMed ID: 16763018 [TBL] [Abstract][Full Text] [Related]
6. Optimizing QSAR models for predicting ligand binding to the drug-metabolizing cytochrome P450 isoenzyme CYP2D6. Saraceno M; Massarelli I; Imbriani M; James TL; Bianucci AM Chem Biol Drug Des; 2011 Aug; 78(2):236-51. PubMed ID: 21575140 [TBL] [Abstract][Full Text] [Related]
7. Identification of cytochrome P450 2D6 and 2C9 substrates and inhibitors by QSAR analysis. Jónsdóttir SÓ; Ringsted T; Nikolov NG; Dybdahl M; Wedebye EB; Niemelä JR Bioorg Med Chem; 2012 Mar; 20(6):2042-53. PubMed ID: 22364953 [TBL] [Abstract][Full Text] [Related]
8. Structure-based site of metabolism prediction for cytochrome P450 2D6. Moors SL; Vos AM; Cummings MD; Van Vlijmen H; Ceulemans A J Med Chem; 2011 Sep; 54(17):6098-105. PubMed ID: 21797232 [TBL] [Abstract][Full Text] [Related]
9. The role of phenylalanine 483 in cytochrome P450 2D6 is strongly substrate dependent. Lussenburg BM; Keizers PH; de Graaf C; Hidestrand M; Ingelman-Sundberg M; Vermeulen NP; Commandeur JN Biochem Pharmacol; 2005 Oct; 70(8):1253-61. PubMed ID: 16135359 [TBL] [Abstract][Full Text] [Related]
10. Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: importance of the quality of the dataset. Burton J; Ijjaali I; Barberan O; Petitet F; Vercauteren DP; Michel A J Med Chem; 2006 Oct; 49(21):6231-40. PubMed ID: 17034129 [TBL] [Abstract][Full Text] [Related]
11. Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling. Bazeley PS; Prithivi S; Struble CA; Povinelli RJ; Sem DS J Chem Inf Model; 2006; 46(6):2698-708. PubMed ID: 17125210 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis, and biological testing of potential heme-coordinating nitric oxide synthase inhibitors. Litzinger EA; Martásek P; Roman LJ; Silverman RB Bioorg Med Chem; 2006 May; 14(9):3185-98. PubMed ID: 16431112 [TBL] [Abstract][Full Text] [Related]
13. A natural variant of the heme-binding signature (R441C) resulting in complete loss of function of CYP2D6. Klein K; Tatzel S; Raimundo S; Saussele T; Hustert E; Pleiss J; Eichelbaum M; Zanger UM Drug Metab Dispos; 2007 Aug; 35(8):1247-50. PubMed ID: 17460029 [TBL] [Abstract][Full Text] [Related]
14. In vitro-in vivo extrapolation of CYP2D6 inactivation by paroxetine: prediction of nonstationary pharmacokinetics and drug interaction magnitude. Venkatakrishnan K; Obach RS Drug Metab Dispos; 2005 Jun; 33(6):845-52. PubMed ID: 15788540 [TBL] [Abstract][Full Text] [Related]
15. Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. Susnow RG; Dixon SL J Chem Inf Comput Sci; 2003; 43(4):1308-15. PubMed ID: 12870924 [TBL] [Abstract][Full Text] [Related]
16. The molecular basis of CYP2D6-mediated N-dealkylation: balance between metabolic clearance routes and enzyme inhibition. Bonn B; Masimirembwa CM; Aristei Y; Zamora I Drug Metab Dispos; 2008 Nov; 36(11):2199-210. PubMed ID: 18725510 [TBL] [Abstract][Full Text] [Related]
17. QSAR of cytochrome inhibitors. Roy K; Roy PP Expert Opin Drug Metab Toxicol; 2009 Oct; 5(10):1245-66. PubMed ID: 19708826 [TBL] [Abstract][Full Text] [Related]
18. QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors. Roy PP; Roy K Chem Biol Drug Des; 2009 Apr; 73(4):442-55. PubMed ID: 19291105 [TBL] [Abstract][Full Text] [Related]
19. Probing small-molecule binding to cytochrome P450 2D6 and 2C9: An in silico protocol for generating toxicity alerts. Rossato G; Ernst B; Smiesko M; Spreafico M; Vedani A ChemMedChem; 2010 Dec; 5(12):2088-101. PubMed ID: 21038340 [TBL] [Abstract][Full Text] [Related]
20. Implications of mechanism-based inhibition of CYP2D6 for the pharmacokinetics and toxicity of MDMA. Yang J; Jamei M; Heydari A; Yeo KR; de la Torre R; Farré M; Tucker GT; Rostami-Hodjegan A J Psychopharmacol; 2006 Nov; 20(6):842-9. PubMed ID: 16714321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]