BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19638317)

  • 1. Understanding CYP2D6 interactions.
    de Groot MJ; Wakenhut F; Whitlock G; Hyland R
    Drug Discov Today; 2009 Oct; 14(19-20):964-72. PubMed ID: 19638317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme.
    Wang B; Yang LP; Zhang XZ; Huang SQ; Bartlam M; Zhou SF
    Drug Metab Rev; 2009; 41(4):573-643. PubMed ID: 19645588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of CYP2D6 substrate interactions by computational methods.
    Ito Y; Kondo H; Goldfarb PS; Lewis DF
    J Mol Graph Model; 2008 Feb; 26(6):947-56. PubMed ID: 17764997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of model of cytochrome P450 2D6: an in silico tool for predicting metabolism and inhibition.
    Kemp CA; Flanagan JU; van Eldik AJ; Maréchal JD; Wolf CR; Roberts GC; Paine MJ; Sutcliffe MJ
    J Med Chem; 2004 Oct; 47(22):5340-6. PubMed ID: 15481972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism.
    Gibbs JP; Hyland R; Youdim K
    Drug Metab Dispos; 2006 Sep; 34(9):1516-22. PubMed ID: 16763018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing QSAR models for predicting ligand binding to the drug-metabolizing cytochrome P450 isoenzyme CYP2D6.
    Saraceno M; Massarelli I; Imbriani M; James TL; Bianucci AM
    Chem Biol Drug Des; 2011 Aug; 78(2):236-51. PubMed ID: 21575140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cytochrome P450 2D6 and 2C9 substrates and inhibitors by QSAR analysis.
    Jónsdóttir SÓ; Ringsted T; Nikolov NG; Dybdahl M; Wedebye EB; Niemelä JR
    Bioorg Med Chem; 2012 Mar; 20(6):2042-53. PubMed ID: 22364953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based site of metabolism prediction for cytochrome P450 2D6.
    Moors SL; Vos AM; Cummings MD; Van Vlijmen H; Ceulemans A
    J Med Chem; 2011 Sep; 54(17):6098-105. PubMed ID: 21797232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of phenylalanine 483 in cytochrome P450 2D6 is strongly substrate dependent.
    Lussenburg BM; Keizers PH; de Graaf C; Hidestrand M; Ingelman-Sundberg M; Vermeulen NP; Commandeur JN
    Biochem Pharmacol; 2005 Oct; 70(8):1253-61. PubMed ID: 16135359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: importance of the quality of the dataset.
    Burton J; Ijjaali I; Barberan O; Petitet F; Vercauteren DP; Michel A
    J Med Chem; 2006 Oct; 49(21):6231-40. PubMed ID: 17034129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling.
    Bazeley PS; Prithivi S; Struble CA; Povinelli RJ; Sem DS
    J Chem Inf Model; 2006; 46(6):2698-708. PubMed ID: 17125210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and biological testing of potential heme-coordinating nitric oxide synthase inhibitors.
    Litzinger EA; Martásek P; Roman LJ; Silverman RB
    Bioorg Med Chem; 2006 May; 14(9):3185-98. PubMed ID: 16431112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A natural variant of the heme-binding signature (R441C) resulting in complete loss of function of CYP2D6.
    Klein K; Tatzel S; Raimundo S; Saussele T; Hustert E; Pleiss J; Eichelbaum M; Zanger UM
    Drug Metab Dispos; 2007 Aug; 35(8):1247-50. PubMed ID: 17460029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro-in vivo extrapolation of CYP2D6 inactivation by paroxetine: prediction of nonstationary pharmacokinetics and drug interaction magnitude.
    Venkatakrishnan K; Obach RS
    Drug Metab Dispos; 2005 Jun; 33(6):845-52. PubMed ID: 15788540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition.
    Susnow RG; Dixon SL
    J Chem Inf Comput Sci; 2003; 43(4):1308-15. PubMed ID: 12870924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis of CYP2D6-mediated N-dealkylation: balance between metabolic clearance routes and enzyme inhibition.
    Bonn B; Masimirembwa CM; Aristei Y; Zamora I
    Drug Metab Dispos; 2008 Nov; 36(11):2199-210. PubMed ID: 18725510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR of cytochrome inhibitors.
    Roy K; Roy PP
    Expert Opin Drug Metab Toxicol; 2009 Oct; 5(10):1245-66. PubMed ID: 19708826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR studies of CYP2D6 inhibitor aryloxypropanolamines using 2D and 3D descriptors.
    Roy PP; Roy K
    Chem Biol Drug Des; 2009 Apr; 73(4):442-55. PubMed ID: 19291105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing small-molecule binding to cytochrome P450 2D6 and 2C9: An in silico protocol for generating toxicity alerts.
    Rossato G; Ernst B; Smiesko M; Spreafico M; Vedani A
    ChemMedChem; 2010 Dec; 5(12):2088-101. PubMed ID: 21038340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of mechanism-based inhibition of CYP2D6 for the pharmacokinetics and toxicity of MDMA.
    Yang J; Jamei M; Heydari A; Yeo KR; de la Torre R; Farré M; Tucker GT; Rostami-Hodjegan A
    J Psychopharmacol; 2006 Nov; 20(6):842-9. PubMed ID: 16714321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.