These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 19638617)

  • 1. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks.
    Huang SS; Fraenkel E
    Sci Signal; 2009 Jul; 2(81):ra40. PubMed ID: 19638617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swimming upstream: identifying proteomic signals that drive transcriptional changes using the interactome and multiple "-omics" datasets.
    Huang SS; Fraenkel E
    Methods Cell Biol; 2012; 110():57-80. PubMed ID: 22482945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem.
    Tuncbag N; Braunstein A; Pagnani A; Huang SS; Chayes J; Borgs C; Zecchina R; Fraenkel E
    J Comput Biol; 2013 Feb; 20(2):124-36. PubMed ID: 23383998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growing functional modules from a seed protein via integration of protein interaction and gene expression data.
    Maraziotis IA; Dimitrakopoulou K; Bezerianos A
    BMC Bioinformatics; 2007 Oct; 8():408. PubMed ID: 17956603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomic analysis reveals concurrent RNA-protein interactions and identifies new RNA-binding proteins in Saccharomyces cerevisiae.
    Klass DM; Scheibe M; Butter F; Hogan GJ; Mann M; Brown PO
    Genome Res; 2013 Jun; 23(6):1028-38. PubMed ID: 23636942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae.
    Kim H; Hu W; Kluger Y
    BMC Bioinformatics; 2006 Mar; 7():165. PubMed ID: 16551355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PathFinder: mining signal transduction pathway segments from protein-protein interaction networks.
    Bebek G; Yang J
    BMC Bioinformatics; 2007 Sep; 8():335. PubMed ID: 17854489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cartographers toolbox: building bigger and better human protein interaction networks.
    Sanderson CM
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):1-11. PubMed ID: 19282470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering molecular pathways from protein interaction and gene expression data.
    Segal E; Wang H; Koller D
    Bioinformatics; 2003; 19 Suppl 1():i264-71. PubMed ID: 12855469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-quality binary protein interaction map of the yeast interactome network.
    Yu H; Braun P; Yildirim MA; Lemmens I; Venkatesan K; Sahalie J; Hirozane-Kishikawa T; Gebreab F; Li N; Simonis N; Hao T; Rual JF; Dricot A; Vazquez A; Murray RR; Simon C; Tardivo L; Tam S; Svrzikapa N; Fan C; de Smet AS; Motyl A; Hudson ME; Park J; Xin X; Cusick ME; Moore T; Boone C; Snyder M; Roth FP; Barabási AL; Tavernier J; Hill DE; Vidal M
    Science; 2008 Oct; 322(5898):104-10. PubMed ID: 18719252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data.
    Nariai N; Tamada Y; Imoto S; Miyano S
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii206-12. PubMed ID: 16204105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Enrichment/Enzymatic Approach To Study Tightly Clustered Multisite Phosphorylation on Ser-Rich Domains.
    Kanshin E; Pascariu M; Tyers M; D'Amours D; Thibault P
    J Proteome Res; 2018 Sep; 17(9):3050-3060. PubMed ID: 30063138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast Protein Interactome topology provides framework for coordinated-functionality.
    Valente AX; Cusick ME
    Nucleic Acids Res; 2006; 34(9):2812-9. PubMed ID: 16717286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring network interactions within a cell.
    Carter GW
    Brief Bioinform; 2005 Dec; 6(4):380-9. PubMed ID: 16420736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding protein dispensability through machine-learning analysis of high-throughput data.
    Chen Y; Xu D
    Bioinformatics; 2005 Mar; 21(5):575-81. PubMed ID: 15479713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information flow analysis of interactome networks.
    Missiuro PV; Liu K; Zou L; Ross BC; Zhao G; Liu JS; Ge H
    PLoS Comput Biol; 2009 Apr; 5(4):e1000350. PubMed ID: 19503817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks.
    di Bernardo D; Thompson MJ; Gardner TS; Chobot SE; Eastwood EL; Wojtovich AP; Elliott SJ; Schaus SE; Collins JJ
    Nat Biotechnol; 2005 Mar; 23(3):377-83. PubMed ID: 15765094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional clustering of yeast proteins from the protein-protein interaction network.
    Sen TZ; Kloczkowski A; Jernigan RL
    BMC Bioinformatics; 2006 Jul; 7():355. PubMed ID: 16863590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimensionality reduction by UMAP to visualize physical and genetic interactions.
    Dorrity MW; Saunders LM; Queitsch C; Fields S; Trapnell C
    Nat Commun; 2020 Mar; 11(1):1537. PubMed ID: 32210240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size.
    Sambourg L; Thierry-Mieg N
    BMC Bioinformatics; 2010 Dec; 11():605. PubMed ID: 21176124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.