BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 19639115)

  • 1. General FRET-based coding for application in multiplexing methods.
    Giestas L; Petrov V; Baptista PV; Lima JC
    Photochem Photobiol Sci; 2009 Aug; 8(8):1130-8. PubMed ID: 19639115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-labeled oligonucleotide probe for sensing adenosine via FRET: a novel alternative to SNPs genotyping.
    Saito Y; Bag SS; Kusakabe Y; Nagai C; Matsumoto K; Mizuno E; Kodate S; Suzuka I; Saito I
    Chem Commun (Camb); 2007 Jun; (21):2133-5. PubMed ID: 17520113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.
    Algar WR; Krull UJ
    Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC; Nygren AO; O'Sullivan CK
    Mol Biosyst; 2008 Sep; 4(9):950-4. PubMed ID: 18704233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation on interaction between 14mer DNA oligonucleotide and CTAB by fluorescence and fluorescence resonance energy transfer studies.
    Santhiya D; Maiti S
    J Phys Chem B; 2010 Jun; 114(22):7602-8. PubMed ID: 20469940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch.
    Li H; Luo Y; Sun X
    Biosens Bioelectron; 2011 Sep; 27(1):167-71. PubMed ID: 21783356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular beacons: an optimal multifunctional biological probe.
    Li Y; Zhou X; Ye D
    Biochem Biophys Res Commun; 2008 Sep; 373(4):457-61. PubMed ID: 18489905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-step FRET as a structural tool.
    Watrob HM; Pan CP; Barkley MD
    J Am Chem Soc; 2003 Jun; 125(24):7336-43. PubMed ID: 12797808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.
    Okamura Y; Watanabe Y
    Methods Mol Biol; 2006; 335():43-56. PubMed ID: 16785619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of fluorescence resonance energy transfer for two-color DNA microarray platforms.
    Zhu J; Lu Y; Deng C; Huang G; Chen S; Xu S; Lv Y; Mitchelson K; Cheng J
    Anal Chem; 2010 Jun; 82(12):5304-12. PubMed ID: 20499847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor.
    Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M
    Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.
    Soukka T; Rantanen T; Kuningas K
    Ann N Y Acad Sci; 2008; 1130():188-200. PubMed ID: 18596348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral.
    Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T
    Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence energy transfer probes based on the guanine quadruplex formation for the fluorometric detection of potassium ion.
    Nagatoishi S; Nojima T; Galezowska E; Gluszynska A; Juskowiak B; Takenaka S
    Anal Chim Acta; 2007 Jan; 581(1):125-31. PubMed ID: 17386435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots.
    Shahmuradyan A; Moazami-Goudarzi M; Kitazume F; Espie GS; Krull UJ
    Analyst; 2019 Feb; 144(4):1223-1229. PubMed ID: 30534674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of known mutations for medical diagnostics by FRET spectroscopy.
    Aneja A; Mathur N; Bhatnagar PK; Mathur PC
    J Biomater Sci Polym Ed; 2009; 20(13):1823-30. PubMed ID: 19793441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of dual-labeled oligonucleotide probes for SNPs genotyping.
    Saito Y; Bag SS; Kodate S; Suzuka I
    Nucleic Acids Symp Ser (Oxf); 2007; (51):23-4. PubMed ID: 18029567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.
    Orte A; Clarke RW; Klenerman D
    Anal Chem; 2008 Nov; 80(22):8389-97. PubMed ID: 18855410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.